Source code for madminer.likelihood.histo

import logging
import numpy as np
from itertools import product

from .base import BaseLikelihood
from .. import sampling
from ..ml import ScoreEstimator, Ensemble, load_estimator
from ..utils.histo import Histo
from ..utils.various import mdot, less_logging, math_commands
from ..sampling import SampleAugmenter

logger = logging.getLogger(__name__)


[docs]class HistoLikelihood(BaseLikelihood):
[docs] def create_negative_log_likelihood( self, x_observed, observables=None, score_components=None, n_observed=None, x_observed_weights=None, include_xsec=True, luminosity=300000.0, mode="sampled", n_histo_toys=100000, model_file=None, hist_bins=None, thetas_binning=None, test_split=None, ): """ Returns a function which calculates the negative log likelihood for a given parameter point, evaluated with a dataset (x_observed,n_observed,x_observed_weights). Parameters ---------- x_observed : list of ndarray Set of event observables with shape `(n_events, n_observables)`. observables : list of str or None , optional Kinematic variables used in the histograms. The names are the same as used for instance in `DelphesReader`. score_components : None or list of int, optional Defines the score components used. Default value: None. n_observed : int or None , optional If int, number of observed events. If None, n_observed is defined by the length of x_observed. Default: None. x_observed_weights : list of float or None , optional List of event weights with shape `(n_events)`. If None, all events have equal weights. Default: None. include_xsec : bool, optional Whether the Poisson likelihood representing the total number of events is included in the analysis. Default value: True. luminosity : float, optional Integrated luminosity in pb^{-1} assumed in the analysis. Default value: 300000. mode : {"weighted" , "sampled", "histo"} , optional If "sampled", for each evaluation of the likelihood function, a separate set of events are sampled and histogram is created to construct the likelihood function. If "weighted", first a set of weighted events is sampled which is then used to create histograms. Default value: "sampled" n_histo_toys : int or None, optional Number of events drawn to construct the histograms used. If None and weighted_histo is True, all events in the training fraction of the MadMiner file are used. If None and weighted_histo is False, 100000 events are used. Default value: 100000. model_file : str or None, optional Filename of a saved neural network estimating the score. Required if score_components is not None. Default value: None. hist_bins : int or list of (int or ndarray) or None, optional Defines the histogram binning. If int, gives the number of bins automatically chosen for each summary statistic. If list, each entry corresponds to one summary statistic (e.g. kinematic variable specified by hist_vars); an int entry corresponds to the number of automatically chosen bins, an ndarray specifies the bin edges along this dimension explicitly. If None, the bins are chosen according to the defaults: for one summary statistic the default is 25 bins, for 2 it's 8 bins along each direction, for more it's 5 per dimension. Default value: None. thetas_binning : list of ndarray or None Specifies the parameter points used to determine the optimal binning. This is requires if hist_bins doesn't already fully specify the binning of the histogram. Default value : None test_split : Returns ------- negative_log_likelihood : likelihood Function that evaluates the negative log likelihood for a given parameter point """ # Check input and join observables and score components - nothing interesting if observables is None: observables = [] if score_components is None: score_components = [] if observables == [] and score_components == []: logger.info("No observables and scores provided. Calculate LLR due to rate and set include_xsec=True.") include_xsec = True observables = list(observables) + list(score_components) if n_observed is None: n_observed = len(x_observed) if mode not in {"sampled", "weighted", "histo"}: raise ValueError(f"Mode {mode} unknown.") if mode == "histo" and self.n_nuisance_parameters > 0: raise ValueError("Mode histo is currently not supported in the presence of nuisance parameters") # Load model - nothing interesting if score_components: assert all(isinstance(score_component, int) for score_component in score_components) if model_file is None: raise ValueError("You need to provide a model_file!") model = load_estimator(model_file) else: model = None # Create summary function logger.info("Setting up standard summary statistics") summary_function = None if observables: summary_function = self._make_summary_statistic_function(observables=observables, model=model) # Weighted sampled data, summary_stats, weights_benchmarks = None, None, None if mode == "weighted" or mode == "histo": logger.info("Getting weighted data") data, weights_benchmarks = self._make_histo_data_weighted( summary_function=summary_function, n_toys=n_histo_toys, test_split=test_split ) if (mode == "weighted" or mode == "histo") and observables != []: summary_stats = summary_function(x_observed) # find binning logger.info("Setting up binning") if observables != [] and ( hist_bins is None or not all(hasattr(hist_bin, "__len__") for hist_bin in hist_bins) ): if thetas_binning is None: raise ValueError("Your input requires adaptive binning: thetas_binning can not be None.") hist_bins = self._find_bins(hist_bins=hist_bins, n_summary_stats=len(observables)) hist_bins = self._fixed_adaptive_binning( thetas_binning=thetas_binning, x_bins=hist_bins, data=data, weights_benchmarks=weights_benchmarks, n_toys=n_histo_toys, summary_function=summary_function, ) logger.info("Use binning: %s", hist_bins) if mode == "histo": if hist_bins is not None: benchmark_histograms, _ = self._get_benchmark_histograms(data, weights_benchmarks, hist_bins) total_weights = np.array( [sum(benchmark_histogram.flatten()) for benchmark_histogram in benchmark_histograms] ) else: benchmark_histograms = None total_weights = np.array([sum(weights_benchmark) for weights_benchmark in weights_benchmarks.T]) else: total_weights, benchmark_histograms = None, None # define negative likelihood function def nll(params): # Just return the expected Length if params is None: return self.n_nuisance_parameters + self.n_parameters # Process input if len(params) != self.n_nuisance_parameters + self.n_parameters: logger.warning( "Number of parameters is %s, expected %s physical parameters and %s nuisance parameters", len(params), self.n_parameters, self.n_nuisance_parameters, ) theta = params[: self.n_parameters] nu = params[self.n_parameters :] if len(nu) == 0: nu = None # Compute Log Likelihood log_likelihood = self._log_likelihood( n_events=n_observed, xs=x_observed, theta=theta, nu=nu, include_xsec=include_xsec, luminosity=luminosity, x_weights=x_observed_weights, mode=mode, n_histo_toys=n_histo_toys, hist_bins=hist_bins, summary_function=summary_function, data=data, summary_stats=summary_stats, weights_benchmarks=weights_benchmarks, benchmark_histograms=benchmark_histograms, total_weights=total_weights, ) return -log_likelihood return nll
[docs] def create_expected_negative_log_likelihood( self, theta_true, nu_true, observables=None, score_components=None, include_xsec=True, luminosity=300000.0, n_asimov=None, mode="sampled", n_histo_toys=100000, model_file=None, hist_bins=None, thetas_binning=None, test_split=None, ): """ Returns a function which calculates the expected negative log likelihood for a given parameter point, evaluated with test data sampled according to theta_true. Parameters ---------- theta_true : ndarray Specifies the physical parameters according to which the test data is sampled. nu_true : ndarray Specifies the nuisance parameters according to which the test data is sampled. observables : list of str or None , optional Kinematic variables used in the histograms. The names are the same as used for instance in `DelphesReader`. score_components : None or list of int, optional Defines the score components used. Default value: None. include_xsec : bool, optional Whether the Poisson likelihood representing the total number of events is included in the analysis. Default value: True. luminosity : float, optional Integrated luminosity in pb^{-1} assumed in the analysis. Default value: 300000. n_asimov : int or None, optional Size of the Asimov sample. If None, all weighted events in the MadMiner file are used. Default value: None. mode : {"weighted" , "sampled"} , optional If "sampled", for each evaluation of the likelihood function, a separate set of events are sampled and histogram is created to construct the likelihood function. If "weighted", first a set of weighted events is sampled which is then used to create histograms. Default value: "sampled" n_histo_toys : int or None, optional Number of events drawn to construct the histograms used. If None and weighted_histo is True, all events in the training fraction of the MadMiner file are used. If None and weighted_histo is False, 100000 events are used. Default value: 100000. model_file : str or None, optional Filename of a saved neural network estimating the score. Required if score_components is not None. Default value: None. hist_bins : int or list of (int or ndarray) or None, optional Defines the histogram binning. If int, gives the number of bins automatically chosen for each summary statistic. If list, each entry corresponds to one summary statistic (e.g. kinematic variable specified by hist_vars); an int entry corresponds to the number of automatically chosen bins, an ndarray specifies the bin edges along this dimension explicitly. If None, the bins are chosen according to the defaults: for one summary statistic the default is 25 bins, for 2 it's 8 bins along each direction, for more it's 5 per dimension. Default value: None. thetas_binning : list of ndarray or None Specifies the parameter points used to determine the optimal binning. If none, theta_true will be used. Default value : None test_split : Returns ------- negative_log_likelihood : likelihood Function that evaluates the negative log likelihood for a given parameter point """ if thetas_binning is None: thetas_binning = [theta_true] x_asimov, x_weights = self._asimov_data(theta_true, n_asimov=n_asimov) n_observed = luminosity * self.xsecs([theta_true], [nu_true])[0] return self.create_negative_log_likelihood( observables=observables, score_components=score_components, x_observed=x_asimov, n_observed=n_observed, x_observed_weights=x_weights, include_xsec=include_xsec, luminosity=luminosity, mode=mode, n_histo_toys=n_histo_toys, model_file=model_file, hist_bins=hist_bins, thetas_binning=thetas_binning, )
def _log_likelihood( self, n_events, xs, theta, nu, include_xsec=True, luminosity=300000.0, x_weights=None, mode="sampled", n_histo_toys=100000, hist_bins=None, summary_function=None, data=None, summary_stats=None, weights_benchmarks=None, benchmark_histograms=None, total_weights=None, ): """ Low-level function which calculates the value of the log-likelihood ratio. See create_negative_log_likelihood for options. """ log_likelihood = 0.0 if include_xsec: log_likelihood = log_likelihood + self._log_likelihood_poisson( n_events, theta, nu, luminosity, weights_benchmarks, total_weights ) if summary_function is not None: if x_weights is None: x_weights = n_events / float(len(xs)) * np.ones(len(xs)) else: x_weights = x_weights * n_events / np.sum(x_weights) log_likelihood_events = self._log_likelihood_kinematic( xs, theta, nu, mode, n_histo_toys, hist_bins, summary_function, data, summary_stats, weights_benchmarks, benchmark_histograms, ) log_likelihood = log_likelihood + np.dot(x_weights, log_likelihood_events) if nu is not None: log_likelihood = log_likelihood + self._log_likelihood_constraint(nu) logger.debug("Total log likelihood: %s", log_likelihood) return log_likelihood def _log_likelihood_kinematic( self, xs, theta, nu, mode="sampled", n_histo_toys=100000, hist_bins=None, summary_function=None, data=None, summary_stats=None, weights_benchmarks=None, benchmark_histograms=None, ): """ Low-level function which calculates the value of the kinematic part of the log-likelihood. See create_negative_log_likelihood for options. """ # shape of theta if nu is not None: theta = np.concatenate((theta, nu), axis=0) # Calculate summary statistics if summary_stats is None: summary_stats = summary_function(xs) # Make histograms if mode == "sampled": data = self._make_histo_data_sampled( summary_function=summary_function, theta=theta, n_histo_toys=n_histo_toys ) histo = Histo(data, weights=None, bins=hist_bins, epsilon=1.0e-12) elif mode == "weighted": weights = self._weights([theta], [nu], weights_benchmarks)[0] histo = Histo(data, weights=weights, bins=hist_bins, epsilon=1.0e-12) elif mode == "histo": bin_centers = [np.array([(a + b) / 2 for a, b in zip(bins[0:], bins[1:])]) for bins in hist_bins] bin_centers = np.array(list(product(*bin_centers))) histo = self._histogram_morphing(theta, benchmark_histograms, hist_bins, bin_centers) # calculate log-likelihood from histogram return histo.log_likelihood(summary_stats) def _make_summary_statistic_function(self, observables=None, model=None): """ Low-level function that returns a function "summary_function" which evaluates the summary statistic for an event. """ variables = math_commands() x_indices = self._find_x_indices(observables) def summary_function(xs): # only prefined observables - very fast if "score" not in x_indices and "function" not in x_indices: return xs[:, x_indices] # evaluate some observables using eval() - more slow data_events = [] for x in xs: data_event = [] if "function" in x_indices: for observable_name, observable_value in zip(self.observables, x): variables[observable_name] = observable_value if "score" in x_indices: if isinstance(model, ScoreEstimator): score = model.evaluate_score(x=np.array([x]))[0] elif isinstance(model, Ensemble) and model.estimator_type == "score": score, _ = model.evaluate_score(x=np.array([x]), calculate_covariance=False)[0] else: raise RuntimeError("Model has to be 'ScoreEstimator' or Ensemble thereof.") for observable, x_index in zip(observables, x_indices): if x_index == "function": data_event.append(float(eval(observable, variables))) elif x_index == "score": data_event.append(score[observable]) else: data_event.append(x[x_index]) data_events.append(data_event) return np.array(data_events) return summary_function def _find_x_indices(self, observables): """ Low-level function that finds the indices corresponding to the observables and returns them as a list. """ x_names = list(self.observables.keys()) x_indices = [] for obs in observables: if isinstance(obs, int): x_indices.append("score") else: try: x_indices.append(x_names.index(obs)) except: x_indices.append("function") logger.debug("Using x indices %s", x_indices) return x_indices def _make_histo_data_sampled(self, summary_function, theta, n_histo_toys=1000): """ Low-level function that creates histogram data sampled from one benchmark """ # Get unweighted events with less_logging(): sampler = SampleAugmenter(self.madminer_filename, include_nuisance_parameters=True) x, theta, _ = sampler.sample_train_plain( theta=sampling.morphing_point(theta), n_samples=n_histo_toys, test_split=False, filename=None, folder=None, ) # Calculate summary stats return summary_function(x) def _make_histo_data_weighted(self, summary_function, n_toys, test_split=None): """ Low-level function that creates weighted histogram data """ # Get weighted events start_event, end_event, correction_factor = self._calculate_partition_bound("train", test_split) x, weights_benchmarks = self.weighted_events(start_event=start_event, end_event=end_event, n_draws=n_toys) weights_benchmarks *= self.n_samples / n_toys # Calculate summary stats if summary_function is not None: data = summary_function(x) else: data = None return data, weights_benchmarks def _find_bins(self, hist_bins, n_summary_stats): """ Low-level function that sets up the binning of the histograms (I) """ if hist_bins is None: if n_summary_stats == 1: hist_bins = [25] elif n_summary_stats == 2: hist_bins = [8, 8] else: hist_bins = [5 for _ in range(n_summary_stats)] elif isinstance(hist_bins, int): # hist_bins = tuple([hist_bins] * n_summary_stats) hist_bins = [hist_bins for _ in range(n_summary_stats)] return hist_bins def _fixed_adaptive_binning( self, thetas_binning, x_bins, data=None, weights_benchmarks=None, n_toys=None, test_split=None, summary_function=None, ): """ Low-level function that sets up the binning of the histograms (II) """ # Get weighted data if data is None: data, weights_benchmarks = self._make_histo_data_weighted( summary_function=summary_function, n_toys=n_toys, test_split=test_split, ) # Calculate weights for thetas weights = self._weights(thetas_binning, None, weights_benchmarks) weights = np.asarray(weights) weights = np.mean(weights, axis=0) # Histogram histo = Histo(data, weights, x_bins, epsilon=1.0e-12) x_bins = histo.edges return x_bins def _get_benchmark_histograms(self, data, weights_benchmarks, hist_bins, epsilon=1.0e-12): """ Low-level function that returns histograms for morphing benchmarks """ # get histogram bins histo_benchmarks = [] for weights in weights_benchmarks.T: # histo = Histo(data, weights=weights, bins=hist_bins, epsilon=1.0e-12) ranges = [(edges[0], edges[-1]) for edges in hist_bins] histo, _ = np.histogramdd(data, bins=hist_bins, range=ranges, normed=False, weights=weights) histo[:] += epsilon histo_benchmarks.append(histo) # get bin centers bin_centers = [np.array([(a + b) / 2 for a, b in zip(bins[0:], bins[1:])]) for bins in hist_bins] bin_centers = np.array(list(product(*bin_centers))) return histo_benchmarks, bin_centers def _histogram_morphing(self, theta, histogram_benchmarks, hist_bins, bin_centers): """ Low-level function that morphes histograms """ # get array of flattened histograms flattened_histo_weights = [histo.flatten() for histo in histogram_benchmarks] flattened_histo_weights = np.array(flattened_histo_weights).T # calculate dot product theta_matrix = self._get_theta_benchmark_matrix(theta) histo_weights_theta = mdot(theta_matrix, flattened_histo_weights) # create histogram return Histo(bin_centers, weights=histo_weights_theta, bins=hist_bins, epsilon=1.0e-12)