Source code for madminer.ml.parameterized_ratio

from __future__ import absolute_import, division, print_function

import logging
import numpy as np
from collections import OrderedDict
import torch

from ..utils.ml.models.ratio import DenseSingleParameterizedRatioModel
from ..utils.ml.eval import evaluate_ratio_model
from ..utils.ml.utils import get_optimizer, get_loss
from ..utils.various import load_and_check, shuffle, restrict_samplesize
from ..utils.ml.trainer import SingleParameterizedRatioTrainer
from .base import ConditionalEstimator, TheresAGoodReasonThisDoesntWork

try:
    FileNotFoundError
except NameError:
    FileNotFoundError = IOError

logger = logging.getLogger(__name__)


[docs]class ParameterizedRatioEstimator(ConditionalEstimator): """ A neural estimator of the likelihood ratio as a function of the observation x as well as the numerator hypothesis theta. The reference (denominator) hypothesis is kept fixed at some reference value and NOT modeled by the network. Parameters ---------- features : list of int or None, optional Indices of observables (features) that are used as input to the neural networks. If None, all observables are used. Default value: None. n_hidden : tuple of int, optional Units in each hidden layer in the neural networks. If method is 'nde' or 'scandal', this refers to the setup of each individual MADE layer. Default value: (100,). activation : {'tanh', 'sigmoid', 'relu'}, optional Activation function. Default value: 'tanh'. """
[docs] def train( self, method, x, y, theta, r_xz=None, t_xz=None, x_val=None, y_val=None, theta_val=None, r_xz_val=None, t_xz_val=None, alpha=1.0, optimizer="amsgrad", n_epochs=50, batch_size=128, initial_lr=0.001, final_lr=0.0001, nesterov_momentum=None, validation_split=0.25, early_stopping=True, scale_inputs=True, shuffle_labels=False, limit_samplesize=None, memmap=False, verbose="some", scale_parameters=True, n_workers=8, clip_gradient=None, early_stopping_patience=None, ): """ Trains the network. Parameters ---------- method : str The inference method used for training. Allowed values are 'alice', 'alices', 'carl', 'cascal', 'rascal', and 'rolr'. x : ndarray or str Observations, or filename of a pickled numpy array. y : ndarray or str Class labels (0 = numeerator, 1 = denominator), or filename of a pickled numpy array. theta : ndarray or str Numerator parameter point, or filename of a pickled numpy array. r_xz : ndarray or str or None, optional Joint likelihood ratio, or filename of a pickled numpy array. Default value: None. t_xz : ndarray or str or None, optional Joint scores at theta, or filename of a pickled numpy array. Default value: None. x_val : ndarray or str or None, optional Validation observations, or filename of a pickled numpy array. If None and validation_split > 0, validation data will be randomly selected from the training data. Default value: None. y_val : ndarray or str or None, optional Validation labels (0 = numerator, 1 = denominator), or filename of a pickled numpy array. If None and validation_split > 0, validation data will be randomly selected from the training data. Default value: None. theta_val : ndarray or str or None, optional Validation numerator parameter points, or filename of a pickled numpy array. If None and validation_split > 0, validation data will be randomly selected from the training data. Default value: None. r_xz_val : ndarray or str or None, optional Validation joint likelihood ratio, or filename of a pickled numpy array. If None and validation_split > 0, validation data will be randomly selected from the training data. Default value: None. t_xz_val : ndarray or str or None, optional Validation joint scores at theta, or filename of a pickled numpy array. If None and validation_split > 0, validation data will be randomly selected from the training data. Default value: None. alpha : float, optional Hyperparameter weighting the score error in the loss function of the 'alices', 'rascal', and 'cascal' methods. Default value: 1. optimizer : {"adam", "amsgrad", "sgd"}, optional Optimization algorithm. Default value: "amsgrad". n_epochs : int, optional Number of epochs. Default value: 50. batch_size : int, optional Batch size. Default value: 128. initial_lr : float, optional Learning rate during the first epoch, after which it exponentially decays to final_lr. Default value: 0.001. final_lr : float, optional Learning rate during the last epoch. Default value: 0.0001. nesterov_momentum : float or None, optional If trainer is "sgd", sets the Nesterov momentum. Default value: None. validation_split : float or None, optional Fraction of samples used for validation and early stopping (if early_stopping is True). If None, the entire sample is used for training and early stopping is deactivated. Default value: 0.25. early_stopping : bool, optional Activates early stopping based on the validation loss (only if validation_split is not None). Default value: True. scale_inputs : bool, optional Scale the observables to zero mean and unit variance. Default value: True. shuffle_labels : bool, optional If True, the labels (`y`, `r_xz`, `t_xz`) are shuffled, while the observations (`x`) remain in their normal order. This serves as a closure test, in particular as cross-check against overfitting: an estimator trained with shuffle_labels=True should predict to likelihood ratios around 1 and scores around 0. limit_samplesize : int or None, optional If not None, only this number of samples (events) is used to train the estimator. Default value: None. memmap : bool, optional. If True, training files larger than 1 GB will not be loaded into memory at once. Default value: False. verbose : {"all", "many", "some", "few", "none}, optional Determines verbosity of training. Default value: "some". scale_parameters : bool, optional Whether parameters are rescaled to mean zero and unit variance before going into the neural network. Default value: True. Returns ------- results: ndarray Results from SingleParameterizedRatioTrainer.train or DoubleParameterizedRatioTrainer.train for example """ logger.info("Starting training") logger.info(" Method: %s", method) if method in ["cascal", "rascal", "alices"]: logger.info(" alpha: %s", alpha) logger.info(" Batch size: %s", batch_size) logger.info(" Optimizer: %s", optimizer) logger.info(" Epochs: %s", n_epochs) logger.info(" Learning rate: %s initially, decaying to %s", initial_lr, final_lr) if optimizer == "sgd": logger.info(" Nesterov momentum: %s", nesterov_momentum) logger.info(" Validation split: %s", validation_split) logger.info(" Early stopping: %s", early_stopping) logger.info(" Scale inputs: %s", scale_inputs) logger.info(" Scale parameters: %s", scale_parameters) logger.info(" Shuffle labels %s", shuffle_labels) if limit_samplesize is None: logger.info(" Samples: all") else: logger.info(" Samples: %s", limit_samplesize) # Load training data logger.info("Loading training data") memmap_threshold = 1.0 if memmap else None theta = load_and_check(theta, memmap_files_larger_than_gb=memmap_threshold) x = load_and_check(x, memmap_files_larger_than_gb=memmap_threshold) y = load_and_check(y, memmap_files_larger_than_gb=memmap_threshold) r_xz = load_and_check(r_xz, memmap_files_larger_than_gb=memmap_threshold) t_xz = load_and_check(t_xz, memmap_files_larger_than_gb=memmap_threshold) self._check_required_data(method, r_xz, t_xz) # Infer dimensions of problem n_samples = x.shape[0] n_observables = x.shape[1] n_parameters = theta.shape[1] logger.info("Found %s samples with %s parameters and %s observables", n_samples, n_parameters, n_observables) # Limit sample size if limit_samplesize is not None and limit_samplesize < n_samples: logger.info("Only using %s of %s training samples", limit_samplesize, n_samples) x, theta, y, r_xz, t_xz = restrict_samplesize(limit_samplesize, x, theta, y, r_xz, t_xz) # Validation data external_validation = x_val is not None and y_val is not None and theta_val is not None if external_validation: theta_val = load_and_check(theta_val, memmap_files_larger_than_gb=memmap_threshold) x_val = load_and_check(x_val, memmap_files_larger_than_gb=memmap_threshold) y_val = load_and_check(y_val, memmap_files_larger_than_gb=memmap_threshold) r_xz_val = load_and_check(r_xz_val, memmap_files_larger_than_gb=memmap_threshold) t_xz_val = load_and_check(t_xz_val, memmap_files_larger_than_gb=memmap_threshold) logger.info("Found %s separate validation samples", x_val.shape[0]) assert x_val.shape[1] == n_observables assert theta_val.shape[1] == n_parameters if r_xz is not None: assert r_xz_val is not None, "When providing r_xz and sep. validation data, also provide r_xz_val" if t_xz is not None: assert t_xz_val is not None, "When providing t_xz and sep. validation data, also provide t_xz_val" # Scale features if scale_inputs: self.initialize_input_transform(x, overwrite=False) x = self._transform_inputs(x) if external_validation: x_val = self._transform_inputs(x_val) else: self.initialize_input_transform(x, False, overwrite=False) # Scale parameters if scale_parameters: logger.info("Rescaling parameters") self.initialize_parameter_transform(theta) theta = self._transform_parameters(theta) t_xz = self._transform_score(t_xz, inverse=False) if external_validation: t_xz_val = self._transform_score(t_xz_val, inverse=False) else: self.initialize_parameter_transform(theta, False) # Shuffle labels if shuffle_labels: logger.info("Shuffling labels") y, r_xz, t_xz = shuffle(y, r_xz, t_xz) # Features if self.features is not None: x = x[:, self.features] logger.info("Only using %s of %s observables", x.shape[1], n_observables) n_observables = x.shape[1] if external_validation: x_val = x_val[:, self.features] # Check consistency of input with model if self.n_observables is None: self.n_observables = n_observables if self.n_parameters is None: self.n_parameters = n_parameters if n_parameters != self.n_parameters: raise RuntimeError( "Number of parameters does not match model: {} vs {}".format(n_parameters, self.n_parameters) ) if n_observables != self.n_observables: raise RuntimeError( "Number of observables does not match model: {} vs {}".format(n_observables, self.n_observables) ) # Data data = self._package_training_data(method, x, theta, y, r_xz, t_xz) if external_validation: data_val = self._package_training_data(method, x_val, theta_val, y_val, r_xz_val, t_xz_val) else: data_val = None # Create model if self.model is None: logger.info("Creating model") self._create_model() # Losses loss_functions, loss_labels, loss_weights = get_loss(method, alpha) # Optimizer opt, opt_kwargs = get_optimizer(optimizer, nesterov_momentum) # Train model logger.info("Training model") trainer = SingleParameterizedRatioTrainer(self.model, n_workers=n_workers) result = trainer.train( data=data, data_val=data_val, loss_functions=loss_functions, loss_weights=loss_weights, loss_labels=loss_labels, epochs=n_epochs, batch_size=batch_size, optimizer=opt, optimizer_kwargs=opt_kwargs, initial_lr=initial_lr, final_lr=final_lr, validation_split=validation_split, early_stopping=early_stopping, verbose=verbose, clip_gradient=clip_gradient, early_stopping_patience=early_stopping_patience, ) return result
[docs] def evaluate_log_likelihood_ratio(self, x, theta, test_all_combinations=True, evaluate_score=False): """ Evaluates the log likelihood ratio for given observations x betwen the given parameter point theta and the reference hypothesis. Parameters ---------- x : str or ndarray Observations or filename of a pickled numpy array. theta : ndarray or str Parameter points or filename of a pickled numpy array. test_all_combinations : bool, optional If False, the number of samples in the observable and theta files has to match, and the likelihood ratio is evaluated only for the combinations `r(x_i | theta0_i, theta1_i)`. If True, `r(x_i | theta0_j, theta1_j)` for all pairwise combinations `i, j` are evaluated. Default value: True. evaluate_score : bool, optional Sets whether in addition to the likelihood ratio the score is evaluated. Default value: False. Returns ------- log_likelihood_ratio : ndarray The estimated log likelihood ratio. If test_all_combinations is True, the result has shape `(n_thetas, n_x)`. Otherwise, it has shape `(n_samples,)`. score : ndarray or None None if evaluate_score is False. Otherwise the derived estimated score at `theta0`. If test_all_combinations is True, the result has shape `(n_thetas, n_x, n_parameters)`. Otherwise, it has shape `(n_samples, n_parameters)`. """ if self.model is None: raise ValueError("No model -- train or load model before evaluating it!") # Load training data logger.debug("Loading evaluation data") x = load_and_check(x) theta = load_and_check(theta) # Scale observables x = self._transform_inputs(x) theta = self._transform_parameters(theta) # Restrict features if self.features is not None: x = x[:, self.features] all_log_r_hat = [] all_t_hat = [] if test_all_combinations: logger.debug("Starting ratio evaluation for %s x-theta combinations", len(theta) * len(x)) for i, this_theta in enumerate(theta): logger.debug("Starting ratio evaluation for thetas %s / %s: %s", i + 1, len(theta), this_theta) _, log_r_hat, t_hat, _ = evaluate_ratio_model( model=self.model, method_type="parameterized_ratio", theta0s=[this_theta], theta1s=None, xs=x, evaluate_score=evaluate_score, ) t_hat = self._transform_score(t_hat, inverse=True) all_log_r_hat.append(log_r_hat) all_t_hat.append(t_hat) all_log_r_hat = np.array(all_log_r_hat) all_t_hat = np.array(all_t_hat) else: logger.debug("Starting ratio evaluation") _, all_log_r_hat, all_t_hat, _ = evaluate_ratio_model( model=self.model, method_type="parameterized_ratio", theta0s=theta, theta1s=None, xs=x, evaluate_score=evaluate_score, ) all_t_hat = self._transform_score(all_t_hat, inverse=True) logger.debug("Evaluation done") return all_log_r_hat, all_t_hat
[docs] def evaluate_log_likelihood_ratio_torch(self, x, theta, test_all_combinations=True): """ Evaluates the log likelihood ratio for given observations x betwen the given parameter point theta and the reference hypothesis. Parameters ---------- x : torch.tensor Observations. theta : torch.tensor Parameter points. test_all_combinations : bool, optional If False, the number of samples in the observable and theta files has to match, and the likelihood ratio is evaluated only for the combinations `r(x_i | theta0_i, theta1_i)`. If True, `r(x_i | theta0_j, theta1_j)` for all pairwise combinations `i, j` are evaluated. Default value: True. Returns ------- log_likelihood_ratio : torch.tensor The estimated log likelihood ratio. If test_all_combinations is True, the result has shape `(n_thetas, n_x)`. Otherwise, it has shape `(n_samples,)`. """ if self.model is None: raise ValueError("No model -- train or load model before evaluating it!") # Scale observables and parameters x = self._transform_inputs(x) theta = self._transform_parameters(theta) # Eval if test_all_combinations: logger.debug("Starting ratio evaluation for %s x-theta combinations", len(theta) * len(x)) all_log_r_hat = [] for theta_ in theta: theta_ = torch.stack([theta_ for _ in x]) _, log_r_hat, _ = self.model(theta_, x) all_log_r_hat.append(log_r_hat[:, 0].unsqueeze(0)) log_r_hat = torch.cat(all_log_r_hat, dim=0) else: logger.debug("Starting ratio evaluation") _, log_r_hat = self.model(theta, x) return log_r_hat
[docs] def evaluate_log_likelihood(self, *args, **kwargs): raise TheresAGoodReasonThisDoesntWork( "This estimator can only estimate likelihood ratios, not the likelihood " "itself!" )
[docs] def evaluate_score(self, x, theta, nuisance_mode="keep"): """ Evaluates the scores for given observations x betwen at a given parameter point theta. Parameters ---------- x : str or ndarray Observations or filename of a pickled numpy array. theta : ndarray or str Parameter points or filename of a pickled numpy array. nuisance_mode : {"auto", "keep", "profile", "project"} Decides how nuisance parameters are treated. If nuisance_mode is "keep", the returned score is always (n+k)-dimensional. Returns ------- score : ndarray or None The estimated score at `theta`. If test_all_combinations is True, the result has shape `(n_thetas, n_x, n_parameters)`. Otherwise, it has shape `(n_samples, n_parameters)`. """ if nuisance_mode == "keep": logger.debug("Keeping nuisance parameter in score") else: raise ValueError("Unknown nuisance_mode {}".format(nuisance_mode)) _, all_t_hat = self.evaluate_log_likelihood_ratio(x, theta, test_all_combinations=False, evaluate_score=True) return all_t_hat
[docs] def calculate_fisher_information(self, x, theta, weights=None, n_events=1, sum_events=True): fisher_information = super(ParameterizedRatioEstimator, self).calculate_fisher_information( x, theta, weights, n_events, sum_events ) return fisher_information
[docs] def evaluate(self, *args, **kwargs): return self.evaluate_log_likelihood_ratio(*args, **kwargs)
def _create_model(self): self.model = DenseSingleParameterizedRatioModel( n_observables=self.n_observables, n_parameters=self.n_parameters, n_hidden=self.n_hidden, activation=self.activation, dropout_prob=self.dropout_prob, ) @staticmethod def _check_required_data(method, r_xz, t_xz): if method in ["cascal", "alices", "rascal"] and t_xz is None: raise RuntimeError("Method {} requires joint score information".format(method)) if method in ["rolr", "alice", "alices", "rascal"] and r_xz is None: raise RuntimeError("Method {} requires joint likelihood ratio information".format(method)) @staticmethod def _package_training_data(method, x, theta, y, r_xz, t_xz): data = OrderedDict() data["x"] = x data["theta"] = theta data["y"] = y if method in ["rolr", "alice", "alices", "rascal"]: data["r_xz"] = r_xz if method in ["cascal", "alices", "rascal"]: data["t_xz"] = t_xz return data def _wrap_settings(self): settings = super(ParameterizedRatioEstimator, self)._wrap_settings() settings["estimator_type"] = "parameterized_ratio" return settings def _unwrap_settings(self, settings): super(ParameterizedRatioEstimator, self)._unwrap_settings(settings) estimator_type = str(settings["estimator_type"]) if estimator_type != "parameterized_ratio": raise RuntimeError("Saved model is an incompatible estimator type {}.".format(estimator_type))