
MadMiner Documentation
Release 0.8.2

Johann Brehmer, Felix Kling, Irina Espejo, Sinclert Perez, Kyle Cranmer

Jul 28, 2021

SITES

1 Introduction to MadMiner 3

2 Getting started 5

3 Using MadMiner 7

4 Trouble-shooting 11

5 References 13

6 madminer.analysis package 15

7 madminer.core package 19

8 madminer.delphes package 27

9 madminer.fisherinformation package 33

10 madminer.lhe package 49

11 madminer.likelihood package 57

12 madminer.limits package 65

13 madminer.ml package 73

14 madminer.plotting package 101

15 madminer.sampling package 111

16 Indices and tables 123

Python Module Index 125

Index 127

i

ii

MadMiner Documentation, Release 0.8.2

Johann Brehmer, Felix Kling, Irina Espejo, and Kyle Cranmer

Machine learning–based inference for particle physics

SITES 1

MadMiner Documentation, Release 0.8.2

2 SITES

CHAPTER

ONE

INTRODUCTION TO MADMINER

Particle physics processes are usually modelled with complex Monte-Carlo simulations of the hard process, parton
shower, and detector interactions. These simulators typically do not admit a tractable likelihood function: given a
(potentially high-dimensional) set of observables, it is usually not possible to calculate the probability of these ob-
servables for some model parameters. Particle physicists usually tackle this problem of “likelihood-free inference” by
hand-picking a few “good” observables or summary statistics and filling histograms of them. But this conventional
approach discards the information in all other observables and often does not scale well to high-dimensional problems.

In the three publications “Constraining Effective Field Theories with Machine Learning”, “A Guide to Constraining
Effective Field Theories with Machine Learning”, and “Mining gold from implicit models to improve likelihood-free
inference”, a new approach has been developed. In a nutshell, additional information is extracted from the simulations
that is closely related to the matrix elements that determine the hard process. This “augmented data” can be used to
train neural networks to efficiently approximate arbitrary likelihood ratios. We playfully call this process “mining gold”
from the simulator, since this information may be hard to get, but turns out to be very valuable for inference.

But the gold does not have to be hard to mine. This package automates these inference strategies. It wraps around the
simulators MadGraph and Pythia, with different options for the detector simulation. All steps in the analysis chain from
the simulation to the extraction of the augmented data, their processing, and the training and evaluation of the neural
estimators are implemented.

3

https://arxiv.org/abs/1805.00013
https://arxiv.org/abs/1805.00020
https://arxiv.org/abs/1805.00020
https://arxiv.org/abs/1805.12244
https://arxiv.org/abs/1805.12244

MadMiner Documentation, Release 0.8.2

4 Chapter 1. Introduction to MadMiner

CHAPTER

TWO

GETTING STARTED

2.1 Simulator dependencies

Make sure the following tools are installed and running:

• MadGraph (we have tested our setup with version 2.8.0+). See MadGraph’s website for installation instructions.
Note that MadGraph requires a Fortran compiler as well as Python 3.6+.

• For the analysis of systematic uncertainties, LHAPDF6 has to be installed with Python support (see also the
documentation of MadGraph’s systematics tool).

For the detector simulation part, there are different options. For simple parton-level analyses, we provide a bare-bones
option to calculate truth-level observables which do not require any additional packages. We have also implemented a
fast detector simulation based on Delphes with a flexible framework to calculate observables. Using this adds additional
requirements:

echo "install pythia8" | python3 <MadGraph_dir>/bin/mg5_aMC
echo "install Delphes" | python3 <MadGraph_dir>/bin/mg5_aMC

Finally, Delphes can be replaced with another detector simulation, for instance a full detector simulation based with
Geant4. In this case, the user has to implement code that runs the detector simulation, calculates the observables,
and stores the observables and weights in the HDF5 file. The DelphesProcessor and LHEProcessor classes might
provide some guidance for this.

5

https://launchpad.net/mg5amcnlo
https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Systematics
https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Systematics

MadMiner Documentation, Release 0.8.2

2.2 Install MadMiner

To install the MadMiner package with all its Python dependencies, run pip install madminer.

To get the latest development version as well as the tutorials, clone the GitHub repository and run pip install -e
. from the repository main folder.

2.3 Docker image

At the DockerHub madminertool organization we provide Docker images for the latest version of MadMiner. Please
email Irina Espejo for any questions about the Docker images.

6 Chapter 2. Getting started

https://github.com/diana-hep/madminer
https://hub.docker.com/u/madminertool/
mailto:iem244@nyu.edu

CHAPTER

THREE

USING MADMINER

We provide different resources that help with the use of MadMiner:

3.1 Paper

Our main publication MadMiner: Machine-learning-based inference for particle physics provides an overview over this
package. We recommend reading it first before jumping into the code.

3.2 Tutorials

In the examples folder in this repository, we provide two tutorials. The first is called Toy simulator, and it is based on a
toy problem rather than a full particle-physics simulation. It demonstrates inference with MadMiner without spending
much time on the more technical steps of running the simulation. The second, called Particle physics, shows all steps
of a particle-physics analysis with MadMiner.

3.3 Typical workflow

Here we illustrate the structure of data analysis with MadMiner:

7

https://arxiv.org/abs/1907.10621
https://github.com/diana-hep/madminer/tree/master/examples
https://github.com/diana-hep/madminer/blob/master/examples/tutorial_toy_simulator/tutorial_toy_simulator.ipynb
https://github.com/diana-hep/madminer/tree/master/examples/tutorial_particle_physics

MadMiner Documentation, Release 0.8.2

8 Chapter 3. Using MadMiner

MadMiner Documentation, Release 0.8.2

• madminer.core contains the functions to set up the process, parameter space, morphing, and to steer MadGraph
and Pythia.

• madminer.lhe and madminer.delphes contain two example implementations of a detector simulation and
observable calculation. This part can easily be swapped out depending on the use case.

• In madminer.sampling, train and test samples for the machine learning part are generated and augmented with
the joint score and joint ratio.

• madminer.ml contains an implementation of the machine learning part. The user can train and evaluate estima-
tors for the likelihood ratio or score.

• Finally, madminer.fisherinformation contains functions to calculate the Fisher information, both on parton
level or detector level, in the full process, individual observables, or the total cross section.

3.4 Technical documentation

The madminer API is documented on here as well, just look through the pages linked on the left.

3.5 Support

If you have any questions, please chat to us in our Gitter community.

3.4. Technical documentation 9

https://gitter.im/madminer/community

MadMiner Documentation, Release 0.8.2

10 Chapter 3. Using MadMiner

CHAPTER

FOUR

TROUBLE-SHOOTING

If you are having issues with MadMiner, please go through the following check list:

4.1 Event generation crashing

• Is MadGraph correctly installed? Can you generate events with MadGraph on its own, including the reweighing
option?

• If you are using Pythia and Delphes: Are their installations working? Can you run MadGraph with Pythia, and
can you run Delphes on the resulting HepMC sample?

• If you are using PDF or scale uncertainties: Is LHAPDF installed with Python support?

4.2 Key errors when reading LHE files

• Do LHE files contain multiple weights, one for each benchmark, for each event?

4.3 Zero events after reading LHE or Delphes file

• Are there typos in the definitions of required observables, cuts, or efficiencies? If an observable, cut, or efficiency
causes all events to be discarded, DEBUG-level logging output should help you narrow down the source.

4.4 Neural network output does not make sense

• Start simple: one or two hidden layers are often enough for a start.

• Does the loss go down during training? If not, try changing the learning rate.

• Are the loss on the training and validation sample very different? This is the trademark sign of over-training. Try
a simpler network architecture, more data, or early stopping.

11

MadMiner Documentation, Release 0.8.2

12 Chapter 4. Trouble-shooting

CHAPTER

FIVE

REFERENCES

5.1 Citations

If you use MadMiner, please cite our main publication,

@article{Brehmer:2019xox,
author = "Brehmer, Johann and Kling, Felix and Espejo, Irina and Cranmer,␣

→˓Kyle",
title = "{MadMiner: Machine learning-based inference for particle physics}

→˓",
journal = "Comput. Softw. Big Sci.",
volume = "4",
year = "2020",
number = "1",
pages = "3",
doi = "10.1007/s41781-020-0035-2",
eprint = "1907.10621",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
SLACcitation = "%%CITATION = ARXIV:1907.10621;%%"

}

The code itself can be cited as

@misc{MadMiner_code,
author = "Brehmer, Johann and Kling, Felix and Espejo, Irina and Cranmer,␣

→˓Kyle",
title = "{MadMiner}",
doi = "10.5281/zenodo.1489147",
url = {https://github.com/diana-hep/madminer}

}

The main references for the implemented inference techniques are the following:

• CARL: 1506.02169.

• MAF: 1705.07057.

• CASCAL, RASCAL, ROLR, SALLY, SALLINO, SCANDAL:

– 1805.00013.

– 1805.00020.

13

https://arxiv.org/abs/1506.02169
https://arxiv.org/abs/1705.07057
https://arxiv.org/abs/1805.00013
https://arxiv.org/abs/1805.00020

MadMiner Documentation, Release 0.8.2

– 1805.12244.

• ALICE, ALICES: 1808.00973.

5.2 Acknowledgements

We are immensely grateful to all contributors and bug reporters! In particular, we would like to thank Zubair Bhatti,
Philipp Englert, Lukas Heinrich, Alexander Held, Samuel Homiller and Duccio Pappadopulo.

The SCANDAL inference method is based on Masked Autoregressive Flows, where our implementation is a PyTorch
port of the original code by George Papamakarios, available at this repository.

14 Chapter 5. References

https://arxiv.org/abs/1805.12244
https://arxiv.org/abs/1808.00973
https://github.com/diana-hep/madminer/graphs/contributors
https://arxiv.org/abs/1705.07057
https://github.com/gpapamak/maf

CHAPTER

SIX

MADMINER.ANALYSIS PACKAGE

6.1 Submodules

6.2 madminer.analysis.dataanalyzer module

class madminer.analysis.dataanalyzer.DataAnalyzer(filename, disable_morphing=False,
include_nuisance_parameters=True)

Bases: object

Collects common functionality that is used when analysing data in the MadMiner file.

Parameters

filename [str] Path to MadMiner file (for instance the output of mad-
miner.delphes.DelphesProcessor.save()).

disable_morphing [bool, optional] If True, the morphing setup is not loaded from the file. De-
fault value: False.

include_nuisance_parameters [bool, optional] If True, nuisance parameters are taken into ac-
count. Default value: True.

Methods

event_loader([start, end, batch_size, . . .]) Yields batches of events in the MadMiner file.
weighted_events([theta, nu, start_event, . . .]) Returns all events together with the benchmark

weights (if theta is None) or weights for a given theta.
xsec_gradients(thetas[, nus, partition, . . .]) Returns the gradient of total cross sections with re-

spect to parameters.
xsecs([thetas, nus, partition, test_split, . . .]) Returns the total cross sections for benchmarks or pa-

rameter points.

event_loader(start=0, end=None, batch_size=100000, include_nuisance_parameters=None,
generated_close_to=None, return_sampling_ids=False)

Yields batches of events in the MadMiner file.

Parameters

start [int, optional] First event index to load

end [int or None, optional] Last event index to load

batch_size [int, optional] Batch size

15

MadMiner Documentation, Release 0.8.2

include_nuisance_parameters [bool, optional] Whether nuisance parameter benchmarks
are included in the returned data

generated_close_to [None or ndarray, optional] If None, this function yields all events. Oth-
erwise, it just yields just the events that were generated at the closest benchmark point to a
given parameter point.

return_sampling_ids [bool, optional] If True, the iterator returns the sampling IDs in addi-
tion to observables and weights.

Yields

observations [ndarray] Event data

weights [ndarray] Event weights

sampling_ids [int] Sampling IDs (benchmark used for sampling for signal events, -1 for
background events). Only returned if return_sampling_ids = True was set.

weighted_events(theta=None, nu=None, start_event=None, end_event=None, derivative=False,
generated_close_to=None, n_draws=None)

Returns all events together with the benchmark weights (if theta is None) or weights for a given theta.

Parameters

theta [None or ndarray or str, optional] If None, the function returns all benchmark weights.
If str, the function returns the weights for a given benchmark name. If ndarray, it uses
morphing to calculate the weights for this value of theta. Default value: None.

nu [None or ndarray, optional] If None, the nuisance parameters are set to their nominal
values. Otherwise, and if theta is an ndarray, sets the values of the nuisance parameters.

start_event [int] Index (in the MadMiner file) of the first event to consider.

end_event [int] Index (in the MadMiner file) of the last unweighted event to consider.

derivative [bool, optional] If True and if theta is not None, the derivative of the weights with
respect to theta are returned. Default value: False.

generated_close_to [None or int, optional] Only returns benchmarks generated from this
benchmark (and background events). Default value: None.

n_draws [None or int, optional] If not None, returns only this number of events, drawn ran-
domly.

Returns

x [ndarray] Observables with shape (n_unweighted_samples, n_observables).

weights [ndarray] If theta is None and derivative is False, benchmark weights with shape
(n_unweighted_samples, n_benchmarks) in pb. If theta is not None and derivative is
True, the gradient of the weight for the given parameter with respect to theta with shape
(n_unweighted_samples, n_gradients) in pb. Otherwise, weights for the given parameter
theta with shape (n_unweighted_samples,) in pb.

xsec_gradients(thetas, nus=None, partition='all', test_split=0.2, validation_split=0.2, gradients='all',
batch_size=100000, generated_close_to=None)

Returns the gradient of total cross sections with respect to parameters.

Parameters

thetas [list of (ndarray or str), optional] If None, the function returns all benchmark cross
sections. Otherwise, it returns the cross sections for a series of parameter points that are

16 Chapter 6. madminer.analysis package

MadMiner Documentation, Release 0.8.2

either given by their benchmark name (as a str), their benchmark index (as an int), or their
parameter value (as an ndarray, using morphing). Default value: None.

nus [None or list of (None or ndarray), optional] If None, the nuisance parameters are set
to their nominal values (0), i.e. no systematics are taken into account. Otherwise, the list
has to have the same number of elements as thetas, and each entry can specify nuisance
parameters at nominal value (None) or a value of the nuisance parameters (ndarray).

partition [{“train”, “test”, “validation”, “all”}, optional] Which events to use. Default: “all”.

test_split [float, optional] Fraction of events reserved for testing. Default value: 0.2.

validation_split [float, optional] Fraction of weighted events reserved for validation. Default
value: 0.2.

gradients [{“all”, “theta”, “nu”}, optional] Which gradients to calculate. Default value:
“all”.

batch_size [int, optional] Size of the batches of events that are loaded into memory at the
same time. Default value: 100000.

generated_close_to [None or ndarray, optional] If not None, only events originally generated
from the closest benchmark to this parameter point will be used. Default value : None.

Returns

xsecs_gradients [ndarray] Calculated cross section gradients in pb with shape
(n_gradients,).

xsecs(thetas=None, nus=None, partition='all', test_split=0.2, validation_split=0.2,
include_nuisance_benchmarks=True, batch_size=100000, generated_close_to=None)

Returns the total cross sections for benchmarks or parameter points.

Parameters

thetas [None or list of (ndarray or str), optional] If None, the function returns all benchmark
cross sections. Otherwise, it returns the cross sections for a series of parameter points that
are either given by their benchmark name (as a str), their benchmark index (as an int), or
their parameter value (as an ndarray, using morphing). Default value: None.

nus [None or list of (None or ndarray), optional] If None, the nuisance parameters are set
to their nominal values (0), i.e. no systematics are taken into account. Otherwise, the list
has to have the same number of elements as thetas, and each entry can specify nuisance
parameters at nominal value (None) or a value of the nuisance parameters (ndarray).

partition [{“train”, “test”, “validation”, “all”}, optional] Which event partition to use. De-
fault: “all”.

test_split [float, optional] Fraction of events reserved for testing. Default value: 0.2.

validation_split [float, optional] Fraction of weighted events reserved for validation. Default
value: 0.2.

include_nuisance_benchmarks [bool, optional] Whether to include nuisance benchmarks
if thetas is None. Default value: True.

batch_size [int, optional] Size of the batches of events that are loaded into memory at the
same time. Default value: 100000.

generated_close_to [None or ndarray, optional] If not None, only events originally generated
from the closest benchmark to this parameter point will be used. Default value : None.

Returns

6.2. madminer.analysis.dataanalyzer module 17

MadMiner Documentation, Release 0.8.2

xsecs [ndarray] Calculated cross sections in pb.

xsec_uncertainties [ndarray] Cross-section uncertainties in pb. Basically calculated as
sum(weights**2)**0.5.

6.3 Module contents

18 Chapter 6. madminer.analysis package

CHAPTER

SEVEN

MADMINER.CORE PACKAGE

7.1 Submodules

7.2 madminer.core.madminer module

class madminer.core.madminer.MadMiner
Bases: object

The central class to manage parameter spaces, benchmarks, and the generation of events through MadGraph and
Pythia.

An instance of this class is the starting point of most MadMiner applications. It is typically used in four steps:

• Defining the parameter space through MadMiner.add_parameter

• Defining the benchmarks, i.e. the points at which the squared matrix elements will be evalu-
ated in MadGraph, with MadMiner.add_benchmark() or, if operator morphing is used, with Mad-
Miner.set_benchmarks_from_morphing()

• Saving this setup with MadMiner.save() (it can be loaded in a new instance with MadMiner.load())

• Running MadGraph and Pythia with the appropriate settings with MadMiner.run() or Mad-
Miner.run_multiple() (the latter allows the user to combine runs from multiple run cards and sampling
points)

Please see the tutorial for a hands-on introduction to its methods.

Methods

add_benchmark(parameter_values[, . . .]) Manually adds an individual benchmark, that is, a pa-
rameter point that will be evaluated by MadGraph.

add_parameter(lha_block, lha_id[, . . .]) Adds an individual parameter.
add_systematics(effect[, systematic_name, . . .])

Parameters

finite_differences([epsilon]) Adds benchmarks so that the score can be computed
from finite differences

load(filename[, disable_morphing]) Loads MadMiner setup from a file.
reweight_existing_sample(. . . [, . . .]) High-level function that adds the weights required for

MadMiner to an existing sample.
continues on next page

19

MadMiner Documentation, Release 0.8.2

Table 1 – continued from previous page
run(mg_directory, proc_card_file, . . . [, . . .]) High-level function that creates the the MadGraph

process, all required cards, and prepares or runs the
event generation for one combination of cards.

run_multiple(mg_directory, proc_card_file, . . .) High-level function that creates the the Mad-
Graph process, all required cards, and prepares or
runs the event generation for multiple combina-
tions of run_cards or importance samplings (sam-
ple_benchmarks).

save(filename) Saves MadMiner setup into a file.
set_benchmarks([benchmarks, verbose]) Manually sets all benchmarks, that is, parameter

points that will be evaluated by MadGraph.
set_morphing([max_overall_power, n_bases, . . .]) Sets up the morphing environment.
set_parameters([parameters]) Manually sets all parameters, overwriting previously

added parameters.

reset_systematics

add_benchmark(parameter_values, benchmark_name=None, verbose=True)
Manually adds an individual benchmark, that is, a parameter point that will be evaluated by MadGraph.

If this command is called before

Parameters

parameter_values [dict] The keys of this dict should be the parameter names and the values
the corresponding parameter values.

benchmark_name [str or None, optional] Name of benchmark. If None, a default name is
used. Default value: None.

verbose [bool, optional] If True, prints output about each benchmark. Default value: True.

Returns

None

Raises

RuntimeError If a benchmark with the same name already exists, if parameter_values is not
a dict, or if a key of parameter_values does not correspond to a defined parameter.

add_parameter(lha_block, lha_id, parameter_name=None, param_card_transform=None,
morphing_max_power=2, parameter_range=(0.0, 1.0))

Adds an individual parameter.

Parameters

lha_block [str] The name of the LHA block as used in the param_card. Case-sensitive.

lha_id [int] The LHA id as used in the param_card.

parameter_name [str or None] An internal name for the parameter. If None, a the default
‘benchmark_i’ is used.

morphing_max_power [int or tuple of int] The maximal power with which this parameter
contributes to the squared matrix element of the process of interest. If a tuple is given,
gives this maximal power for each of several operator configurations. Typically at tree
level, this maximal number is 2 for parameters that affect one vertex (e.g. only production

20 Chapter 7. madminer.core package

MadMiner Documentation, Release 0.8.2

or only decay of a particle), and 4 for parameters that affect two vertices (e.g. production
and decay). Default value: 2.

param_card_transform [None or str] Represents a one-parameter function mapping the
parameter (“theta”) to the value that should be written in the parameter cards. This str is
parsed by Python’s eval() function, and “theta” is parsed as the parameter value. Default
value: None.

parameter_range [tuple of float] The range of parameter values of primary interest. Only
affects the basis optimization. Default value: (0., 1.).

Returns

None

add_systematics(effect, systematic_name=None, norm_variation=1.1, scale='mu', scale_variations=(0.5,
1.0, 2.0), pdf_variation='CT10')

Parameters

effect [{“norm”, “scale”, “pdf”}] Type of the nuisance parameter. If “norm”, it will affect
the overall normalization of one or multiple samples in the process. If “scale”, the nui-
sance parameter effect will be determined by varying factorization or regularization scales
(depending on scale_variation and scales). If “pdf”, the effect of the nuisance parameters
will be determined by varying the PDF used.

systematic_name [None or str, optional]

scale [{“mu”, “mur”, “muf”}, optional] If type is “scale”, this sets whether only the regular-
ization scale (“mur”), only the factorization scale (“muf”), or both simultaneously (“mu”)
are varied. Default value: “mu”.

norm_variation [float, optional] If type is “norm”, this sets the relative effect of the nuisance
parameter on the cross section at the “plus 1 sigma” variation. 1.1 corresponds to a 10%
increase, 0.9 to a 10% decrease relative to the nominal cross section. Default value: 1.1.

scale_variations [tuple of float, optional] If type is “scale”, this sets how the regularization
and / or factorization scales are varied. A tuple like (0.5,1.,2.) specifies the factors with
which they are varied. Default value: (0.5,1.,2.0).

pdf_variation [str, optional] If type is “pdf”, defines the PDF set for the variation. The
option is passed along to the –pdf option of MadGraph’s systematics module. See https:
//cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Systematics for a list. The option “CT10”
would, as an example, run over all the eigenvectors of the CTEQ10 set. Default value:
“CT10”.

Returns

None

finite_differences(epsilon=0.01)
Adds benchmarks so that the score can be computed from finite differences

Don’t add any more benchmarks or parameters after calling this!

load(filename, disable_morphing=False)
Loads MadMiner setup from a file. All parameters, benchmarks, and morphing settings are overwritten.
See save for more details.

Parameters

filename [str] Path to the MadMiner file.

7.2. madminer.core.madminer module 21

https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Systematics
https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Systematics

MadMiner Documentation, Release 0.8.2

disable_morphing [bool, optional] If True, the morphing setup is not loaded from the file.
Default value: False.

Returns

None

reset_systematics()

reweight_existing_sample(mg_process_directory, run_name, param_card_template_file,
sample_benchmark, reweight_benchmarks=None,
only_prepare_script=False, log_directory=None, initial_command=None)

High-level function that adds the weights required for MadMiner to an existing sample.

If only_prepare_scripts=True, the event generation is not run directly, but a bash script is created in <pro-
cess_folder>/madminer/run.sh that will start the event generation with the correct settings.

Currently does not support adding systematics.

Parameters

mg_process_directory [str] Path to the MG process directory. If None, MadMiner uses
./MG_process.

run_name [str] Run name.

param_card_template_file [str] Path to a param card that will be used as template to create
the appropriate param cards for these runs.

sample_benchmark [str] The name of the benchmark used to generate this sample.

reweight_benchmarks [list of str or None] Lists the names of benchmarks to which the
sample should be reweighted. If None, all benchmarks (except sample_benchmarks) are
used.

only_prepare_script [bool, optional] If True, the event generation is not started, but instead
a run.sh script is created in the process directory. Default value: False.

log_directory [str or None, optional] Directory for log files with the MadGraph output. If
None, ./logs is used. Default value: None.

initial_command [str or None, optional] Initial shell commands that have to be executed
before MG is run (e.g. to load a virtual environment). Default value: None.

Returns

None

run(mg_directory, proc_card_file, param_card_template_file, run_card_file=None,
mg_process_directory=None, pythia8_card_file=None, configuration_file=None,
sample_benchmark=None, is_background=False, only_prepare_script=False,
ufo_model_directory=None, log_directory=None, temp_directory=None, initial_command=None,
systematics=None, order='LO', python_executable=None)
High-level function that creates the the MadGraph process, all required cards, and prepares or runs the
event generation for one combination of cards.

If only_prepare_scripts=True, the event generation is not run directly, but a bash script is created in <pro-
cess_folder>/madminer/run.sh that will start the event generation with the correct settings.

High-level function that creates the the MadGraph process, all required cards, and prepares or runs the
event generation for multiple combinations of run_cards or importance samplings (sample_benchmarks).

22 Chapter 7. madminer.core package

MadMiner Documentation, Release 0.8.2

If only_prepare_scripts=True, the event generation is not run directly, but a bash script is created in <pro-
cess_folder>/madminer/run.sh that will start the event generation with the correct settings.

Parameters

mg_directory [str] Path to the MadGraph 5 base directory.

proc_card_file [str] Path to the process card that tells MadGraph how to generate the process.

param_card_template_file [str] Path to a param card that will be used as template to create
the appropriate param cards for these runs.

run_card_file [str] Paths to the MadGraph run card. If None, the default run_card is used.

mg_process_directory [str or None, optional] Path to the MG process directory. If None,
MadMiner uses ./MG_process. Default value: None.

pythia8_card_file [str or None, optional] Path to the MadGraph Pythia8 card. If None, the
card present in the process folder is used. Default value: None.

configuration_file [str, optional] Path to the MadGraph me5_configuration card. If None,
the card present in the process folder is used. Default value: None.

sample_benchmark [list of str or None, optional] Lists the names of benchmarks that should
be used to sample events. A different sampling does not change the expected differential
cross sections, but will change which regions of phase space have many events (small vari-
ance) or few events (high variance). If None, the benchmark added first is used. Default
value: None.

is_background [bool, optional] Should be True for background processes, i.e. process in
which the differential cross section does not depend on the parameters (i.e. is the same for
all benchmarks). In this case, no reweighting is run, which can substantially speed up the
event generation. Default value: False.

only_prepare_script [bool, optional] If True, the event generation is not started, but instead
a run.sh script is created in the process directory. Default value: False.

ufo_model_directory [str or None, optional] Path to an UFO model directory that should
be used, but is not yet installed in mg_directory/models. The model will be copied to the
MadGraph model directory before the process directory is generated. (Default value =
None.

log_directory [str or None, optional] Directory for log files with the MadGraph output. If
None, ./logs is used. Default value: None.

temp_directory [str or None, optional] Path to a temporary directory. If None, a system
default is used. Default value: None.

initial_command [str or None, optional] Initial shell commands that have to be executed
before MG is run (e.g. to load a virtual environment). Default value: None.

systematics [None or list of str, optional] If list of str, defines which systematics are used for
this run.

order [‘LO’ or ‘NLO’, optional] Differentiates between LO and NLO order runs. Minor
changes to writing, reading and naming cards. Default value: ‘LO’

python_executable [None or str, optional] Provides a path to the Python executable that
should be used to call MadMiner. Default: None.

Returns

None

7.2. madminer.core.madminer module 23

MadMiner Documentation, Release 0.8.2

run_multiple(mg_directory, proc_card_file, param_card_template_file, run_card_files,
mg_process_directory=None, pythia8_card_file=None, configuration_file=None,
sample_benchmarks=None, is_background=False, only_prepare_script=False,
ufo_model_directory=None, log_directory=None, temp_directory=None,
initial_command=None, systematics=None, order='LO', python_executable=None)

High-level function that creates the the MadGraph process, all required cards, and prepares or runs the
event generation for multiple combinations of run_cards or importance samplings (sample_benchmarks).

If only_prepare_scripts=True, the event generation is not run directly, but a bash script is created in <pro-
cess_folder>/madminer/run.sh that will start the event generation with the correct settings.

Parameters

mg_directory [str] Path to the MadGraph 5 base directory.

proc_card_file [str] Path to the process card that tells MadGraph how to generate the process.

param_card_template_file [str] Path to a param card that will be used as template to create
the appropriate param cards for these runs.

run_card_files [list of str] Paths to the MadGraph run card.

mg_process_directory [str or None, optional] Path to the MG process directory. If None,
MadMiner uses ./MG_process. Default value: None.

pythia8_card_file [str, optional] Path to the MadGraph Pythia8 card. If None, the card
present in the process folder is used. Default value: None.

configuration_file [str, optional] Path to the MadGraph me5_configuration card. If None,
the card present in the process folder is used. Default value: None.

sample_benchmarks [list of str or None, optional] Lists the names of benchmarks that
should be used to sample events. A different sampling does not change the expected dif-
ferential cross sections, but will change which regions of phase space have many events
(small variance) or few events (high variance). If None, a run is started for each of the
benchmarks, which should map out all regions of phase space well. Default value: None.

is_background [bool, optional] Should be True for background processes, i.e. process in
which the differential cross section does not depend on the parameters (i.e. is the same for
all benchmarks). In this case, no reweighting is run, which can substantially speed up the
event generation. Default value: False.

only_prepare_script [bool, optional] If True, the event generation is not started, but instead
a run.sh script is created in the process directory. Default value: False.

ufo_model_directory [str or None, optional] Path to an UFO model directory that should
be used, but is not yet installed in mg_directory/models. The model will be copied to the
MadGraph model directory before the process directory is generated. (Default value =
None)

log_directory [str or None, optional] Directory for log files with the MadGraph output. If
None, ./logs is used. Default value: None.

temp_directory [str or None, optional] Path to a temporary directory. If None, a system
default is used. Default value: None.

initial_command [str or None, optional] Initial shell commands that have to be executed
before MG is run (e.g. to load a virtual environment). If not specified and python2_override
is True, it adds the user-installed Python2 binaries to the PATH. Default value: None.

systematics [None or list of str, optional] If list of str, defines which systematics are used for
these runs.

24 Chapter 7. madminer.core package

MadMiner Documentation, Release 0.8.2

order [‘LO’ or ‘NLO’, optional] Differentiates between LO and NLO order runs. Minor
changes to writing, reading and naming cards. Default value: ‘LO’

python_executable [None or str, optional] Provides a path to the Python executable that
should be used to call MadMiner. Default: None.

Returns

None

save(filename)
Saves MadMiner setup into a file.

The file format follows the HDF5 standard. The saved information includes:

• the parameter definitions,

• the benchmark points,

• the systematics setup (if defined), and

• the morphing setup (if defined).

This file is an important input to later stages in the analysis chain, including the processing of generated
events, extraction of training samples, and calculation of Fisher information matrices. In these downstream
tasks, additional information will be written to the MadMiner file, including the observations and event
weights.

Parameters

filename [str] Path to the MadMiner file.

Returns

None

set_benchmarks(benchmarks=None, verbose=True)
Manually sets all benchmarks, that is, parameter points that will be evaluated by MadGraph. Calling this
function overwrites all previously defined benchmarks.

Parameters

benchmarks [dict or list or None, optional] Specifies all benchmarks. If None, all bench-
marks are reset. If dict, the keys are the benchmark names and the values are dicts of the
form {parameter_name:value}. If list, the entries are dicts {parameter_name:value} (and
the benchmark names are chosen automatically). Default value: None.

verbose [bool, optional] If True, prints output about each benchmark. Default value: True.

Returns

None

set_morphing(max_overall_power=4, n_bases=1, include_existing_benchmarks=True, n_trials=100,
n_test_thetas=100)

Sets up the morphing environment.

Sets benchmarks, i.e. parameter points that will be evaluated by MadGraph, for a morphing algorithm,
and calculates all information required for morphing. Morphing is a technique that allows MadMax to
infer the full probability distribution p(x_i | theta) for each simulated event x_i and any theta, not just the
benchmarks.

The morphing basis is optimized with respect to the expected mean squared morphing weights over the
parameter region of interest. If keep_existing_benchmarks=True, benchmarks defined previously will be
incorporated in the morphing basis and only the remaining basis points will be optimized.

7.2. madminer.core.madminer module 25

MadMiner Documentation, Release 0.8.2

Note that any subsequent call to set_benchmarks or add_benchmark will overwrite the morphing
setup. The correct order is therefore to manually define benchmarks first, using set_benchmarks
or add_benchmark, and then to create the morphing setup and complete the basis by calling
set_benchmarks_from_morphing(keep_existing_benchmarks=True).

Parameters

max_overall_power [int or tuple of int, optional] The maximal sum of powers of all param-
eters contributing to the squared matrix element. If a tuple is given, gives the maximal
sum of powers for each of several operator configurations (see add_parameter). Typically,
if parameters can affect the couplings at n vertices, this number is 2n. Default value: 4.

n_bases [int, optional] The number of morphing bases generated. If n_bases > 1, multiple
bases are combined, and the weights for each basis are reduced by a factor 1 / n_bases.
Currently only the default choice of 1 is fully implemented. Do not use any other value for
now. Default value: 1.

include_existing_benchmarks [bool, optional] If True, the previously defined benchmarks
are included in the morphing basis. In that case, the number of free parameters in the
optimization routine is reduced. If False, the existing benchmarks will still be simulated,
but are not part of the morphing routine. Default value: True.

n_trials [int, optional] Number of random basis configurations tested in the optimization
procedure. A larger number will increase the run time of the optimization, but lead to
better results. Default value: 100.

n_test_thetas [int, optional] Number of random parameter points used to evaluate the ex-
pected mean squared morphing weights. A larger number will increase the run time of the
optimization, but lead to better results. Default value: 100.

Returns

None

set_parameters(parameters=None)
Manually sets all parameters, overwriting previously added parameters.

Parameters

parameters [dict or list or None, optional] If parameters is None, resets parameters. If
parameters is an dict, the keys should be str and give the parameter names, and the val-
ues are tuples of the form (LHA_block, LHA_ID, morphing_max_power, param_min,
param_max) or of the form (LHA_block, LHA_ID). If parameters is a list, the items should
be tuples of the form (LHA_block, LHA_ID). Default value: None.

Returns

None

7.3 Module contents

26 Chapter 7. madminer.core package

CHAPTER

EIGHT

MADMINER.DELPHES PACKAGE

8.1 Submodules

8.2 madminer.delphes.delphes_reader module

class madminer.delphes.delphes_reader.DelphesReader(filename)
Bases: object

Detector simulation with Delphes and simple calculation of observables.

After setting up the parameter space and benchmarks and running MadGraph and Pythia, all of which is organized
in the madminer.core.MadMiner class, the next steps are the simulation of detector effects and the calculation
of observables. Different tools can be used for these tasks, please feel free to implement the detector simulation
and analysis routine of your choice.

This class provides an example implementation based on Delphes. Its workflow consists of the following steps:

• Initializing the class with the filename of a MadMiner HDF5 file (the output of mad-
miner.core.MadMiner.save())

• Adding one or multiple event samples produced by MadGraph and Pythia in DelphesProces-
sor.add_sample().

• Running Delphes on the samples that require it through DelphesProcessor.run_delphes().

• Optionally, acceptance cuts for all visible particles can be defined with DelphesProcessor.set_acceptance().

• Defining observables through DelphesProcessor.add_observable() or DelphesProces-
sor.add_observable_from_function(). A simple set of default observables is provided in Delphes-
Processor.add_default_observables()

• Optionally, cuts can be set with DelphesProcessor.add_cut()

• Calculating the observables from the Delphes ROOT files with DelphesProces-
sor.analyse_delphes_samples()

• Saving the results with DelphesProcessor.save()

Please see the tutorial for a detailed walk-through.

Parameters

filename [str or None, optional] Path to MadMiner file (the output of mad-
miner.core.MadMiner.save()). Default value: None.

27

MadMiner Documentation, Release 0.8.2

Methods

add_cut(definition[, pass_if_not_parsed]) Adds a cut as a string that can be parsed by Python’s
eval() function and returns a bool.

add_default_observables([n_leptons_max,
. . .])

Adds a set of simple standard observables: the four-
momenta (parameterized as E, pT, eta, phi) of the
hardest visible particles, and the missing transverse
energy.

add_observable(name, definition[, required, . . .]) Adds an observable as a string that can be parsed by
Python’s eval() function.

add_observable_from_function(name, fn[,
. . .])

Adds an observable defined through a function.

add_sample(hepmc_filename, . . . [, . . .]) Adds a sample of simulated events.
analyse_delphes_samples([generator_truth,
. . .])

Main function that parses the Delphes samples
(ROOT files), checks acceptance and cuts, and ex-
tracts the observables and weights.

reset_cuts() Resets all cuts.
reset_observables() Resets all observables.
run_delphes(delphes_directory, delphes_card) Runs the fast detector simulation Delphes on all

HepMC samples added so far for which it hasn’t been
run yet.

save(filename_out[, shuffle]) Saves the observable definitions, observable values,
and event weights in a MadMiner file.

set_acceptance([pt_min_e, pt_min_mu, . . .]) Sets acceptance cuts for all visible particles.

add_cut(definition, pass_if_not_parsed=False)
Adds a cut as a string that can be parsed by Python’s eval() function and returns a bool.

Parameters

definition [str] An expression that can be parsed by Python’s eval() function and returns a
bool: True for the event to pass this cut, False for it to be rejected. In the definition, all
visible particles can be used: e, mu, j, a, and l provide lists of electrons, muons, jets,
photons, and leptons (electrons and muons combined), in each case sorted by descending
transverse momentum. met provides a missing ET object. visible and all provide access to
the sum of all visible particles and the sum of all visible particles plus MET, respectively.
In addition, MadMinerParticle have properties charge and pdg_id, which return the charge
in units of elementary charges (i.e. an electron has e[0].charge = -1.), and the PDG particle
ID. For instance, “len(e) >= 2” requires at least two electrons passing the acceptance cuts,
while “mu[0].charge > 0.” specifies that the hardest muon is positively charged.

pass_if_not_parsed [bool, optional] Whether the cut is passed if the observable cannot be
parsed. Default value: False.

Returns

None

add_default_observables(n_leptons_max=2, n_photons_max=2, n_jets_max=2, include_met=True,
include_visible_sum=True, include_numbers=True, include_charge=True)

Adds a set of simple standard observables: the four-momenta (parameterized as E, pT, eta, phi) of the
hardest visible particles, and the missing transverse energy.

Parameters

n_leptons_max [int, optional] Number of hardest leptons for which the four-momenta are
saved. Default value: 2.

28 Chapter 8. madminer.delphes package

MadMiner Documentation, Release 0.8.2

n_photons_max [int, optional] Number of hardest photons for which the four-momenta are
saved. Default value: 2.

n_jets_max [int, optional] Number of hardest jets for which the four-momenta are saved.
Default value: 2.

include_met [bool, optional] Whether the missing energy observables are stored. Default
value: True.

include_visible_sum [bool, optional] Whether observables characterizing the sum of all par-
ticles are stored. Default value: True.

include_numbers [bool, optional] Whether the number of leptons, photons, and jets is saved
as observable. Default value: True.

include_charge [bool, optional] Whether the lepton charge is saved as observable. Default
value: True.

Returns

None

add_observable(name, definition, required=False, default=None)
Adds an observable as a string that can be parsed by Python’s eval() function.

Parameters

name [str] Name of the observable. Since this name will be used in eval() calls for cuts, this
should not contain spaces or special characters.

definition [str] An expression that can be parsed by Python’s eval() function. As objects,
the visible particles can be used: e, mu, j, a, and l provide lists of electrons, muons, jets,
photons, and leptons (electrons and muons combined), in each case sorted by descending
transverse momentum. met provides a missing ET object. visible and all provide access to
the sum of all visible particles and the sum of all visible particles plus MET, respectively.
In addition, MadMinerParticle have properties charge and pdg_id, which return the charge
in units of elementary charges (i.e. an electron has e[0].charge = -1.), and the PDG particle
ID. For instance, “abs(j[0].phi() - j[1].phi())” defines the azimuthal angle between the two
hardest jets.

required [bool, optional] Whether the observable is required. If True, an event will only be
retained if this observable is successfully parsed. For instance, any observable involving
“j[1]” will only be parsed if there are at least two jets passing the acceptance cuts. Default
value: False.

default [float or None, optional] If required=False, this is the placeholder value for observ-
ables that cannot be parsed. None is replaced with np.nan. Default value: None.

Returns

None

add_observable_from_function(name, fn, required=False, default=None)
Adds an observable defined through a function.

Parameters

name [str] Name of the observable. Since this name will be used in eval() calls for cuts, this
should not contain spaces or special characters.

fn [function] A function with signature observable(leptons, photons, jets, met) where the in-
put arguments are lists of MadMinerParticle instances and a float is returned. The function
should raise a RuntimeError to signal that it is not defined.

8.2. madminer.delphes.delphes_reader module 29

MadMiner Documentation, Release 0.8.2

required [bool, optional] Whether the observable is required. If True, an event will only be
retained if this observable is successfully parsed. For instance, any observable involving
“j[1]” will only be parsed if there are at least two jets passing the acceptance cuts. Default
value: False.

default [float or None, optional] If required=False, this is the placeholder value for observ-
ables that cannot be parsed. None is replaced with np.nan. Default value: None.

Returns

None

add_sample(hepmc_filename, sampled_from_benchmark, is_background=False, delphes_filename=None,
lhe_filename=None, k_factor=1.0, weights='lhe', systematics=None)

Adds a sample of simulated events. A HepMC file (from Pythia) has to be provided always, since some
relevant information is only stored in this file. The user can optionally provide a Delphes file, in this case
run_delphes() does not have to be called.

By default, the weights are read out from the Delphes file and their names from the HepMC file. There are
some issues with current MadGraph versions that lead to Pythia not storing the weights. As work-around,
MadMiner supports reading weights from the LHE file (the observables still come from the Delphes file).
To enable this, use weights=”lhe”.

Parameters

hepmc_filename [str] Path to the HepMC event file (with extension ‘.hepmc’ or
‘.hepmc.gz’).

sampled_from_benchmark [str] Name of the benchmark that was used for sampling in this
event file (the keyword sample_benchmark of madminer.core.MadMiner.run()).

is_background [bool, optional] Whether the sample is a background sample (i.e. without
benchmark reweighting).

delphes_filename [str or None, optional] Path to the Delphes event file (with extension
‘.root’). If None, the user has to call run_delphes(), which will create this file. Default
value: None.

lhe_filename [None or str, optional] Path to the LHE event file (with extension ‘.lhe’ or
‘.lhe.gz’). This is only needed if weights is “lhe”.

k_factor [float, optional] Multiplies the cross sections found in the sample. Default value:
1.

weights [{“delphes”, “lhe”}, optional] If “delphes”, the weights are read out from the
Delphes ROOT file, and their names are taken from the HepMC file. If “lhe” (and
lhe_filename is not None), the weights are taken from the LHE file (and matched with
the observables from the Delphes ROOT file). The “delphes” behaviour is generally better
as it minimizes the risk of mismatching observables and weights, but for some MadGraph
and Delphes versions there are issues with weights not being saved in the HepMC and
Delphes ROOT files. In this case, setting weights to “lhe” and providing the unweighted
LHE file from MadGraph may be an easy fix. Default value: “lhe”.

systematics [None or list of str, optional] List of systematics associated with this sample.
Default value: None.

Returns

None

30 Chapter 8. madminer.delphes package

MadMiner Documentation, Release 0.8.2

analyse_delphes_samples(generator_truth=False, delete_delphes_files=False,
reference_benchmark=None, parse_lhe_events_as_xml=True)

Main function that parses the Delphes samples (ROOT files), checks acceptance and cuts, and extracts the
observables and weights.

Parameters

generator_truth [bool, optional] If True, the generator truth information (as given out by
Pythia) will be parsed. Detector resolution or efficiency effects will not be taken into ac-
count.

delete_delphes_files [bool, optional] If True, the Delphes ROOT files will be deleted after
extracting the information from them. Default value: False.

reference_benchmark [str or None, optional] The weights at the nuisance benchmarks
will be rescaled to some reference theta benchmark: dsigma(x|theta_sampling(x),nu)
-> dsigma(x|theta_ref,nu) = dsigma(x|theta_sampling(x),nu) * dsigma(x|theta_ref,0) /
dsigma(x|theta_sampling(x),0). This sets the name of the reference benchmark. If None,
the first one will be used. Default value: None.

parse_lhe_events_as_xml [bool, optional] Decides whether the LHE events are parsed with
an XML parser (more robust, but slower) or a text parser (less robust, faster). Default value:
True.

Returns

None

reset_cuts()
Resets all cuts.

reset_observables()
Resets all observables.

run_delphes(delphes_directory, delphes_card, initial_command=None, log_file=None)
Runs the fast detector simulation Delphes on all HepMC samples added so far for which it hasn’t been run
yet.

Parameters

delphes_directory [str] Path to the Delphes directory.

delphes_card [str] Path to a Delphes card.

initial_command [str or None, optional] Initial bash commands that have to be executed
before Delphes is run (e.g. to load the correct virtual environment). Default value: None.

log_file [str or None, optional] Path to log file in which the Delphes output is saved. Default
value: None.

Returns

None

save(filename_out, shuffle=True)
Saves the observable definitions, observable values, and event weights in a MadMiner file. The parameter,
benchmark, and morphing setup is copied from the file provided during initialization. Nuisance benchmarks
found in the HepMC file are added.

Parameters

filename_out [str] Path to where the results should be saved.

8.2. madminer.delphes.delphes_reader module 31

MadMiner Documentation, Release 0.8.2

shuffle [bool, optional] If True, events are shuffled before being saved. That’s important
when there are multiple distinct samples (e.g. signal and background). Default value:
True.

Returns

None

set_acceptance(pt_min_e=None, pt_min_mu=None, pt_min_a=None, pt_min_j=None, eta_max_e=None,
eta_max_mu=None, eta_max_a=None, eta_max_j=None)

Sets acceptance cuts for all visible particles. These are taken into account before observables and cuts are
calculated.

Parameters

pt_min_e [float or None, optional] Minimum electron transverse momentum in GeV. None
means no acceptance cut. Default value: None.

pt_min_mu [float or None, optional] Minimum muon transverse momentum in GeV. None
means no acceptance cut. Default value: None.

pt_min_a [float or None, optional] Minimum photon transverse momentum in GeV. None
means no acceptance cut. Default value: None.

pt_min_j [float or None, optional] Minimum jet transverse momentum in GeV. None means
no acceptance cut. Default value: None.

eta_max_e [float or None, optional] Maximum absolute electron pseudorapidity. None
means no acceptance cut. Default value: None.

eta_max_mu [float or None, optional] Maximum absolute muon pseudorapidity. None
means no acceptance cut. Default value: None.

eta_max_a [float or None, optional] Maximum absolute photon pseudorapidity. None means
no acceptance cut. Default value: None.

eta_max_j [float or None, optional] Maximum absolute jet pseudorapidity. None means no
acceptance cut. Default value: None.

Returns

None

8.3 Module contents

32 Chapter 8. madminer.delphes package

CHAPTER

NINE

MADMINER.FISHERINFORMATION PACKAGE

9.1 Submodules

9.2 madminer.fisherinformation.geometry module

class madminer.fisherinformation.geometry.InformationGeometry
Bases: object

Functions to calculate limits using Information Geometry.

After initializing the InformationGeometry class, a Fisher Information needs to be provided using one of the
following functions

• InformationGeometry.information_from_formula() defines the Fisher Information explicitly as function of
the theory parameters theta.

• InformationGeometry.information_from_grid() loads a grid of Fisher Information which is then interpo-
lated.

Using information geometrical methods, the function InformationGeometry.distance_contours() then calculates
the distance contours and equivalently the p-values throughout parameter space.

Methods

distance_contours(theta0, grid_ranges, . . .) Finds the distance values from the point theta0 and
the corresponding p-value within the parameter space
bounded by grid_ranges.

find_trajectory(theta0, dtheta0, limits[, . . .]) Finds the geodesic trajectory starting at a parameter
point theta0 going in the initial direction dtheta0.

information_from_formula(formula, dimen-
sion)

Explicitly defines the Fisher Information as function
of the theory parameter theta through a formula that
can be evaluated using eval().

information_from_grid(theta_grid, . . . [, . . .]) Loads a grid of coordinates and corresponding Fisher
Information, which is then interpolated.

distance_contours(theta0, grid_ranges, grid_resolutions, stepsize=None, ntrajectories=None,
continous_sampling=False, return_trajectories=False)

Finds the distance values from the point theta0 and the corresponding p-value within the parameter space
bounded by grid_ranges.

Parameters

33

MadMiner Documentation, Release 0.8.2

theta0 [ndarray] Parameter point theta0 at which the geodesic trajectory starts.

grid_ranges [list of (tuple of float)] Specifies the boundaries of the parameter grid in which
the trajectory is evaluated. It should be [[min, max], [min, max], . . . , [min, max], where
the list goes over all parameters and min and max are float.

grid_resolutions [list of int] Resolution of the parameter space grid on which the p-values
are evaluated. The individual entries specify the number of points along each parameter
individually.

stepsize [float or None, optional] Maximal stepsize |Delta theta| during numerical inte-
gration in parameter space. If None, stepsize = min([(max-min)/20 for (min,max) in
grid_ranges]). Default: None

ntrajectories [int or None, optional] Number of sampled trajectories. If None, ntrajectories
= 20 times the number of dimensions. Default: None

continous_sampling [bool, optional] If n_dimension is 2, the trajectories are sampled con-
tinously in the angular direction. Default: False

return_trajectories [bool, optional] Returns the trajectories (parameter points and dis-
tances). Default: False

Returns

theta_grid [ndarray] Parameter points at which the p-values are evaluated with shape
(n_grid_points, n_dimension).

p_values [ndarray] Observed p-values for each parameter point on the grid, with shape
(n_grid_points,).

p_values [ndarray] Interpolated distance from theta0 for each parameter point on the grid,
with shape (n_grid_points,).

(list_of_theta, list_of_distance) [(ndarray,ndarray)] Only returned if return_trajectories is
True. List of parameter points theta (n_points, n_dimension) and List of distances from the
staring point theta0 (n_points,).

find_trajectory(theta0, dtheta0, limits, stepsize=1)
Finds the geodesic trajectory starting at a parameter point theta0 going in the initial direction dtheta0.

Parameters

theta0 [ndarray] Parameter point theta0 at which the geodesic trajectory starts.

dtheta0 [ndarray] Initial direction dtheta0 of the geodesic

limits [list of (tuple of float)] Specifies the boundaries of the parameter grid in which the
trajectory is evaulated. It should be [[min, max], [min, max], . . . , [min, max], where the
list goes over all parameters and min and max are float.

stepsize [int, optional] Maximal stepsize |Delta theta| during numerical integration in pa-
rameter space. $Default: 1

Returns

list_of_theta [ndarray] List of parameter points theta (n_points, n_dimension).

list_of_distance [ndarray] List of distances from the staring point theta0 (n_points,).

information_from_formula(formula, dimension)
Explicitly defines the Fisher Information as function of the theory parameter theta through a formula that
can be evaluated using eval().

Parameters

34 Chapter 9. madminer.fisherinformation package

MadMiner Documentation, Release 0.8.2

formula [str] Explicit definition of the Fisher Information as ndarray, which can
be a function of the n-dimensional theory parameter theta. Example: for-
mula=”np.array([[1+theta[0],1],[1,2*theta[1]**2]])”

dimension [int] Dimensionality of the theory parameter space.

information_from_grid(theta_grid, fisherinformation_grid, option='smooth', inverse='exact')
Loads a grid of coordinates and corresponding Fisher Information, which is then interpolated.

Parameters

theta_grid [ndarray] List if parameter points theta at which the Fisher information matrices
I_ij(theta) is evaluated. Shape (n_gridpoints, n_dimension).

fisherinformation_grid [ndarray] List if Fisher information matrices I_ij(theta). Shape
(n_gridpoints, n_dimension, n_dimension).

option [{“smooth”, “linear”}] Defines if the Fisher Information is interpolated smoothly us-
ing the function CloughTocher2DInterpolator() or piecewise linear using LinearNDInter-
polator(). Default = ‘smooth’.

inverse [{“exact”, “interpolate”}] Defines if the inverse Fisher Information is obtained by
either first interpolating the Fisher Information and then inverting it (“exact”) or by first
inverting the grid of Fisher Informations and then interpolating the inverse (“interpolate”).
Default = ‘exact’.

9.3 madminer.fisherinformation.information module

class madminer.fisherinformation.information.FisherInformation(filename, in-
clude_nuisance_parameters=True)

Bases: madminer.analysis.dataanalyzer.DataAnalyzer

Functions to calculate expected Fisher information matrices.

After initializing a FisherInformation instance with the filename of a MadMiner file, different information ma-
trices can be calculated:

• FisherInformation.truth_information() calculates the full truth-level Fisher information. This is the in-
formation in an idealized measurement where all parton-level particles with their charges, flavours, and
four-momenta can be accessed with perfect accuracy.

• FisherInformation.full_information() calculates the full Fisher information in realistic detector-level obser-
vations, estimated with neural networks. In addition to the MadMiner file, this requires a trained SALLY
or SALLINO estimator as well as an unweighted evaluation sample.

• FisherInformation.rate_information() calculates the Fisher information in the total cross section.

• FisherInformation.histo_information() calculates the Fisher information in the histogram of one (parton-
level or detector-level) observable.

• FisherInformation.histo_information_2d() calculates the Fisher information in a two-dimensional his-
togram of two (parton-level or detector-level) observables.

• FisherInformation.histogram_of_information() calculates the full truth-level Fisher information in different
slices of one observable (the “distribution of the Fisher information”).

Finally, don’t forget that in the presence of nuisance parameters the constraint terms also affect the Fisher infor-
mation. This term is given by FisherInformation.calculate_fisher_information_nuisance_constraints().

Parameters

9.3. madminer.fisherinformation.information module 35

MadMiner Documentation, Release 0.8.2

filename [str] Path to MadMiner file (for instance the output of mad-
miner.delphes.DelphesProcessor.save()).

include_nuisance_parameters [bool, optional] If True, nuisance parameters are taken into ac-
count. Default value: True.

Methods

calculate_fisher_information_full_detector(. . .)Calculates the full Fisher information in realistic
detector-level observations, estimated with neural
networks.

calculate_fisher_information_full_truth (theta)Calculates the full Fisher information at parton / truth
level.

calculate_fisher_information_hist1d(theta,
. . .)

Calculates the Fisher information in the one-
dimensional histogram of an (parton-level or
detector-level, depending on how the observations in
the MadMiner file were calculated) observable.

calculate_fisher_information_hist2d(theta,
. . .)

Calculates the Fisher information in a two-
dimensional histogram of two (parton-level or
detector-level, depending on how the observations in
the MadMiner file were calculated) observables.

calculate_fisher_information_nuisance_constraints()Builds the Fisher information term representing the
Gaussian constraints on the nuisance parameters

calculate_fisher_information_rate(theta,
. . .)

Calculates the Fisher information in a measurement
of the total cross section (without any kinematic in-
formation).

event_loader([start, end, batch_size, . . .]) Yields batches of events in the MadMiner file.
full_information(theta, model_file[, . . .]) Calculates the full Fisher information in realistic

detector-level observations, estimated with neural
networks.

histo_information(theta, luminosity, . . . [, . . .]) Calculates the Fisher information in the one-
dimensional histogram of an (parton-level or
detector-level, depending on how the observations in
the MadMiner file were calculated) observable.

histo_information_2d(theta, luminosity, . . .) Calculates the Fisher information in a two-
dimensional histogram of two (parton-level or
detector-level, depending on how the observations in
the MadMiner file were calculated) observables.

histogram_of_fisher_information(theta, . . .) Calculates the full and rate-only Fisher information
in slices of one observable.

histogram_of_information(theta, observable,
. . .)

Calculates the full and rate-only Fisher information
in slices of one observable.

histogram_of_sigma_dsigma(theta, observable,
. . .)

Fills events into histograms and calculates the cross
section and first derivative for each bin

nuisance_constraint_information() Builds the Fisher information term representing the
Gaussian constraints on the nuisance parameters

rate_information(theta, luminosity[, cuts, . . .]) Calculates the Fisher information in a measurement
of the total cross section (without any kinematic in-
formation).

truth_information(theta[, luminosity, cuts, . . .]) Calculates the full Fisher information at parton / truth
level.

continues on next page

36 Chapter 9. madminer.fisherinformation package

MadMiner Documentation, Release 0.8.2

Table 2 – continued from previous page
weighted_events([theta, nu, start_event, . . .]) Returns all events together with the benchmark

weights (if theta is None) or weights for a given theta.
xsec_gradients(thetas[, nus, partition, . . .]) Returns the gradient of total cross sections with re-

spect to parameters.
xsecs([thetas, nus, partition, test_split, . . .]) Returns the total cross sections for benchmarks or pa-

rameter points.

calculate_fisher_information_full_detector(theta, model_file, unweighted_x_sample_file=None,
luminosity=300000.0, include_xsec_info=True,
mode='score', calculate_covariance=True,
batch_size=100000, test_split=0.2)

Calculates the full Fisher information in realistic detector-level observations, estimated with neural net-
works. In addition to the MadMiner file, this requires a trained SALLY or SALLINO estimator.

Nuisance parameter are taken into account automatically if the SALLY / SALLINO model was trained with
them.

Parameters

theta [ndarray] Parameter point theta at which the Fisher information matrix I_ij(theta) is
evaluated.

model_file [str] Filename of a trained local score regression model that was trained on sam-
ples from theta (see madminer.ml.Estimator).

unweighted_x_sample_file [str or None] Filename of an unweighted x sam-
ple that is sampled according to theta and obeys the cuts (see mad-
miner.sampling.SampleAugmenter.extract_samples_train_local()). If None, the Fisher
information is instead calculated on the full, weighted samples (the data in the MadMiner
file). Default value: None.

luminosity [float, optional] Luminosity in pb^-1. Default value: 300000.

include_xsec_info [bool, optional] Whether the rate information is included in the returned
Fisher information. Default value: True.

mode [{“score”, “information”}, optional] How the ensemble uncertainty on the kinematic
Fisher information is calculated. If mode is “information”, the Fisher information for each
estimator is calculated individually and only then are the sample mean and covariance
calculated. If mode is “score”, the sample mean is calculated for the score for each event.
Default value: “score”.

calculate_covariance [bool, optional] If True, the covariance between the different estima-
tors is calculated. Default value: True.

batch_size [int, optional] Batch size. Default value: 100000.

test_split [float or None, optional] If unweighted_x_sample_file is None, this determines
the fraction of weighted events used for evaluation. If None, all events are used (this will
probably include events used during training!). Default value: 0.2.

Returns

fisher_information [ndarray or list of ndarray] Estimated expected full detector-level Fisher
information matrix with shape (n_parameters, n_parameters). If more then one value en-
semble_vote_expectation_weight is given, this is a list with results for all entries in ensem-
ble_vote_expectation_weight.

fisher_information_uncertainty [ndarray or list of ndarray or None] Covariance matrix of
the Fisher information matrix with shape (n_parameters, n_parameters, n_parameters,

9.3. madminer.fisherinformation.information module 37

MadMiner Documentation, Release 0.8.2

n_parameters). If more then one value ensemble_vote_expectation_weight is given, this is
a list with results for all entries in ensemble_vote_expectation_weight.

calculate_fisher_information_full_truth(theta, luminosity=300000.0, cuts=None,
efficiency_functions=None,
include_nuisance_parameters=True)

Calculates the full Fisher information at parton / truth level. This is the information in an idealized mea-
surement where all parton-level particles with their charges, flavours, and four-momenta can be accessed
with perfect accuracy, i.e. the latent variables z_parton can be measured directly.

Parameters

theta [ndarray] Parameter point theta at which the Fisher information matrix I_ij(theta) is
evaluated.

luminosity [float] Luminosity in pb^-1.

cuts [None or list of str, optional] Cuts. Each entry is a parseable Python expression that
returns a bool (True if the event should pass a cut, False otherwise). Default value: None.

efficiency_functions [list of str or None] Efficiencies. Each entry is a parseable Python ex-
pression that returns a float for the efficiency of one component. Default value: None.

include_nuisance_parameters [bool, optional] If True, nuisance parameters are taken into
account. Default value: True.

Returns

fisher_information [ndarray] Expected full truth-level Fisher information matrix with shape
(n_parameters, n_parameters).

fisher_information_uncertainty [ndarray] Covariance matrix of the Fisher information ma-
trix with shape (n_parameters, n_parameters, n_parameters, n_parameters), calculated
with plain Gaussian error propagation.

calculate_fisher_information_hist1d(theta, luminosity, observable, bins, histrange=None,
cuts=None, efficiency_functions=None,
n_events_dynamic_binning=None)

Calculates the Fisher information in the one-dimensional histogram of an (parton-level or detector-level,
depending on how the observations in the MadMiner file were calculated) observable.

Parameters

theta [ndarray] Parameter point theta at which the Fisher information matrix I_ij(theta) is
evaluated.

luminosity [float] Luminosity in pb^-1.

observable [str] Expression for the observable to be histogrammed. The str will be parsed by
Python’s eval() function and can use the names of the observables in the MadMiner files.

bins [int or ndarray] If int: number of bins in the histogram, excluding overflow bins. Oth-
erwise, defines the bin boundaries (excluding overflow bins).

histrange [tuple of float or None, optional] Minimum and maximum value of the histogram
in the form (min, max). Overflow bins are always added. If None and bins is an int, variable-
width bins with equal cross section are constructed automatically. Default value: None.

cuts [None or list of str, optional] Cuts. Each entry is a parseable Python expression that
returns a bool (True if the event should pass a cut, False otherwise). Default value: None.

efficiency_functions [list of str or None] Efficiencies. Each entry is a parseable Python ex-
pression that returns a float for the efficiency of one component. Default value: None.

38 Chapter 9. madminer.fisherinformation package

MadMiner Documentation, Release 0.8.2

n_events_dynamic_binning [int or None, optional] Number of events used to calculate the
dynamic binning (if histrange is None). If None, all events are used. Note that these events
are not shuffled, so if the events in the MadMiner file are sorted, using a value different
from None can cause issues. Default value: None.

Returns

fisher_information [ndarray] Expected Fisher information in the histogram with shape
(n_parameters, n_parameters).

fisher_information_uncertainty [ndarray] Covariance matrix of the Fisher information ma-
trix with shape (n_parameters, n_parameters, n_parameters, n_parameters), calculated
with plain Gaussian error propagation.

calculate_fisher_information_hist2d(theta, luminosity, observable1, bins1, observable2, bins2,
histrange1=None, histrange2=None, cuts=None,
efficiency_functions=None, n_events_dynamic_binning=None)

Calculates the Fisher information in a two-dimensional histogram of two (parton-level or detector-level,
depending on how the observations in the MadMiner file were calculated) observables.

Parameters

theta [ndarray] Parameter point theta at which the Fisher information matrix I_ij(theta) is
evaluated.

luminosity [float] Luminosity in pb^-1.

observable1 [str] Expression for the first observable to be histogrammed. The str will be
parsed by Python’s eval() function and can use the names of the observables in the Mad-
Miner files.

bins1 [int or ndarray] If int: number of bins along the first axis in the histogram in the his-
togram, excluding overflow bins. Otherwise, defines the bin boundaries along the first axis
in the histogram (excluding overflow bins).

observable2 [str] Expression for the first observable to be histogrammed. The str will be
parsed by Python’s eval() function and can use the names of the observables in the Mad-
Miner files.

bins2 [int or ndarray] If int: number of bins along the second axis in the histogram in the his-
togram, excluding overflow bins. Otherwise, defines the bin boundaries along the second
axis in the histogram (excluding overflow bins).

histrange1 [tuple of float or None, optional] Minimum and maximum value of the first axis
of the histogram in the form (min, max). Overflow bins are always added. If None, variable-
width bins with equal cross section are constructed automatically. Default value: None.

histrange2 [tuple of float or None, optional] Minimum and maximum value of the first axis
of the histogram in the form (min, max). Overflow bins are always added. If None, variable-
width bins with equal cross section are constructed automatically. Default value: None.

cuts [None or list of str, optional] Cuts. Each entry is a parseable Python expression that
returns a bool (True if the event should pass a cut, False otherwise). Default value: None.

efficiency_functions [list of str or None] Efficiencies. Each entry is a parseable Python ex-
pression that returns a float for the efficiency of one component. Default value: None.

n_events_dynamic_binning [int or None, optional] Number of events used to calculate the
dynamic binning (if histrange is None). If None, all events are used. Note that these events
are not shuffled, so if the events in the MadMiner file are sorted, using a value different
from None can cause issues. Default value: None.

9.3. madminer.fisherinformation.information module 39

MadMiner Documentation, Release 0.8.2

Returns

fisher_information [ndarray] Expected Fisher information in the histogram with shape
(n_parameters, n_parameters).

fisher_information_uncertainty [ndarray] Covariance matrix of the Fisher information ma-
trix with shape (n_parameters, n_parameters, n_parameters, n_parameters), calculated
with plain Gaussian error propagation.

calculate_fisher_information_nuisance_constraints()
Builds the Fisher information term representing the Gaussian constraints on the nuisance parameters

calculate_fisher_information_rate(theta, luminosity, cuts=None, efficiency_functions=None,
include_nuisance_parameters=True)

Calculates the Fisher information in a measurement of the total cross section (without any kinematic infor-
mation).

Parameters

theta [ndarray] Parameter point theta at which the Fisher information matrix I_ij(theta) is
evaluated.

luminosity [float] Luminosity in pb^-1.

cuts [None or list of str, optional] Cuts. Each entry is a parseable Python expression that
returns a bool (True if the event should pass a cut, False otherwise). Default value: None.

efficiency_functions [list of str or None] Efficiencies. Each entry is a parseable Python ex-
pression that returns a float for the efficiency of one component. Default value: None.

include_nuisance_parameters [bool, optional] If True, nuisance parameters are taken into
account. Default value: True.

Returns

fisher_information [ndarray] Expected Fisher information in the total cross section with
shape (n_parameters, n_parameters).

fisher_information_uncertainty [ndarray] Covariance matrix of the Fisher information ma-
trix with shape (n_parameters, n_parameters, n_parameters, n_parameters), calculated
with plain Gaussian error propagation.

full_information(theta, model_file, unweighted_x_sample_file=None, luminosity=300000.0,
include_xsec_info=True, mode='score', calculate_covariance=True,
batch_size=100000, test_split=0.2)

Calculates the full Fisher information in realistic detector-level observations, estimated with neural net-
works. In addition to the MadMiner file, this requires a trained SALLY or SALLINO estimator.

Nuisance parameter are taken into account automatically if the SALLY / SALLINO model was trained with
them.

Parameters

theta [ndarray] Parameter point theta at which the Fisher information matrix I_ij(theta) is
evaluated.

model_file [str] Filename of a trained local score regression model that was trained on sam-
ples from theta (see madminer.ml.Estimator).

unweighted_x_sample_file [str or None] Filename of an unweighted x sam-
ple that is sampled according to theta and obeys the cuts (see mad-
miner.sampling.SampleAugmenter.extract_samples_train_local()). If None, the Fisher

40 Chapter 9. madminer.fisherinformation package

MadMiner Documentation, Release 0.8.2

information is instead calculated on the full, weighted samples (the data in the MadMiner
file). Default value: None.

luminosity [float, optional] Luminosity in pb^-1. Default value: 300000.

include_xsec_info [bool, optional] Whether the rate information is included in the returned
Fisher information. Default value: True.

mode [{“score”, “information”}, optional] How the ensemble uncertainty on the kinematic
Fisher information is calculated. If mode is “information”, the Fisher information for each
estimator is calculated individually and only then are the sample mean and covariance
calculated. If mode is “score”, the sample mean is calculated for the score for each event.
Default value: “score”.

calculate_covariance [bool, optional] If True, the covariance between the different estima-
tors is calculated. Default value: True.

batch_size [int, optional] Batch size. Default value: 100000.

test_split [float or None, optional] If unweighted_x_sample_file is None, this determines
the fraction of weighted events used for evaluation. If None, all events are used (this will
probably include events used during training!). Default value: 0.2.

Returns

fisher_information [ndarray or list of ndarray] Estimated expected full detector-level Fisher
information matrix with shape (n_parameters, n_parameters). If more then one value en-
semble_vote_expectation_weight is given, this is a list with results for all entries in ensem-
ble_vote_expectation_weight.

fisher_information_uncertainty [ndarray or list of ndarray or None] Covariance matrix of
the Fisher information matrix with shape (n_parameters, n_parameters, n_parameters,
n_parameters). If more then one value ensemble_vote_expectation_weight is given, this is
a list with results for all entries in ensemble_vote_expectation_weight.

histo_information(theta, luminosity, observable, bins, histrange=None, cuts=None,
efficiency_functions=None, n_events_dynamic_binning=None)

Calculates the Fisher information in the one-dimensional histogram of an (parton-level or detector-level,
depending on how the observations in the MadMiner file were calculated) observable.

Parameters

theta [ndarray] Parameter point theta at which the Fisher information matrix I_ij(theta) is
evaluated.

luminosity [float] Luminosity in pb^-1.

observable [str] Expression for the observable to be histogrammed. The str will be parsed by
Python’s eval() function and can use the names of the observables in the MadMiner files.

bins [int or ndarray] If int: number of bins in the histogram, excluding overflow bins. Oth-
erwise, defines the bin boundaries (excluding overflow bins).

histrange [tuple of float or None, optional] Minimum and maximum value of the histogram
in the form (min, max). Overflow bins are always added. If None and bins is an int, variable-
width bins with equal cross section are constructed automatically. Default value: None.

cuts [None or list of str, optional] Cuts. Each entry is a parseable Python expression that
returns a bool (True if the event should pass a cut, False otherwise). Default value: None.

efficiency_functions [list of str or None] Efficiencies. Each entry is a parseable Python ex-
pression that returns a float for the efficiency of one component. Default value: None.

9.3. madminer.fisherinformation.information module 41

MadMiner Documentation, Release 0.8.2

n_events_dynamic_binning [int or None, optional] Number of events used to calculate the
dynamic binning (if histrange is None). If None, all events are used. Note that these events
are not shuffled, so if the events in the MadMiner file are sorted, using a value different
from None can cause issues. Default value: None.

Returns

fisher_information [ndarray] Expected Fisher information in the histogram with shape
(n_parameters, n_parameters).

fisher_information_uncertainty [ndarray] Covariance matrix of the Fisher information ma-
trix with shape (n_parameters, n_parameters, n_parameters, n_parameters), calculated
with plain Gaussian error propagation.

histo_information_2d(theta, luminosity, observable1, bins1, observable2, bins2, histrange1=None,
histrange2=None, cuts=None, efficiency_functions=None,
n_events_dynamic_binning=None)

Calculates the Fisher information in a two-dimensional histogram of two (parton-level or detector-level,
depending on how the observations in the MadMiner file were calculated) observables.

Parameters

theta [ndarray] Parameter point theta at which the Fisher information matrix I_ij(theta) is
evaluated.

luminosity [float] Luminosity in pb^-1.

observable1 [str] Expression for the first observable to be histogrammed. The str will be
parsed by Python’s eval() function and can use the names of the observables in the Mad-
Miner files.

bins1 [int or ndarray] If int: number of bins along the first axis in the histogram in the his-
togram, excluding overflow bins. Otherwise, defines the bin boundaries along the first axis
in the histogram (excluding overflow bins).

observable2 [str] Expression for the first observable to be histogrammed. The str will be
parsed by Python’s eval() function and can use the names of the observables in the Mad-
Miner files.

bins2 [int or ndarray] If int: number of bins along the second axis in the histogram in the his-
togram, excluding overflow bins. Otherwise, defines the bin boundaries along the second
axis in the histogram (excluding overflow bins).

histrange1 [tuple of float or None, optional] Minimum and maximum value of the first axis
of the histogram in the form (min, max). Overflow bins are always added. If None, variable-
width bins with equal cross section are constructed automatically. Default value: None.

histrange2 [tuple of float or None, optional] Minimum and maximum value of the first axis
of the histogram in the form (min, max). Overflow bins are always added. If None, variable-
width bins with equal cross section are constructed automatically. Default value: None.

cuts [None or list of str, optional] Cuts. Each entry is a parseable Python expression that
returns a bool (True if the event should pass a cut, False otherwise). Default value: None.

efficiency_functions [list of str or None] Efficiencies. Each entry is a parseable Python ex-
pression that returns a float for the efficiency of one component. Default value: None.

n_events_dynamic_binning [int or None, optional] Number of events used to calculate the
dynamic binning (if histrange is None). If None, all events are used. Note that these events
are not shuffled, so if the events in the MadMiner file are sorted, using a value different
from None can cause issues. Default value: None.

42 Chapter 9. madminer.fisherinformation package

MadMiner Documentation, Release 0.8.2

Returns

fisher_information [ndarray] Expected Fisher information in the histogram with shape
(n_parameters, n_parameters).

fisher_information_uncertainty [ndarray] Covariance matrix of the Fisher information ma-
trix with shape (n_parameters, n_parameters, n_parameters, n_parameters), calculated
with plain Gaussian error propagation.

histogram_of_fisher_information(theta, observable, nbins, histrange, model_file=None,
luminosity=300000.0, cuts=None, efficiency_functions=None,
batch_size=100000, test_split=0.2)

Calculates the full and rate-only Fisher information in slices of one observable. For the full information, it
will return the truth-level information if model_file is None, and otherwise the detector-level information
based on the SALLY-type score estimator saved in model_file.

Parameters

theta [ndarray] Parameter point theta at which the Fisher information matrix I_ij(theta) is
evaluated.

observable [str] Expression for the observable to be sliced. The str will be parsed by Python’s
eval() function and can use the names of the observables in the MadMiner files.

nbins [int] Number of bins in the slicing, excluding overflow bins.

histrange [tuple of float] Minimum and maximum value of the slicing in the form (min,
max). Overflow bins are always added.

model_file [str or None, optional] If None, the truth-level Fisher information is calculated.
If str, filename of a trained local score regression model that was trained on samples from
theta (see madminer.ml.Estimator). Default value: None.

luminosity [float, optional] Luminosity in pb^-1. Default value: 300000.

cuts [None or list of str, optional] Cuts. Each entry is a parseable Python expression that
returns a bool (True if the event should pass a cut, False otherwise). Default value: None.

efficiency_functions [list of str or None] Efficiencies. Each entry is a parseable Python ex-
pression that returns a float for the efficiency of one component. Default value: None.

batch_size [int, optional] If model_file is not None: Batch size. Default value: 100000.

test_split [float or None, optional] If model_file is not None: If unweighted_x_sample_file
is None, this determines the fraction of weighted events used for evaluation. If None, all
events are used (this will probably include events used during training!). Default value:
0.2.

Returns

bin_boundaries [ndarray] Observable slice boundaries.

sigma_bins [ndarray] Cross section in pb in each of the slices.

fisher_infos_rate [ndarray] Expected rate-only Fisher information for each slice. Has shape
(n_slices, n_parameters, n_parameters).

fisher_infos_full [ndarray] Expected full Fisher information for each slice. Has shape
(n_slices, n_parameters, n_parameters).

histogram_of_information(theta, observable, nbins, histrange, model_file=None, luminosity=300000.0,
cuts=None, efficiency_functions=None, batch_size=100000, test_split=0.2)

Calculates the full and rate-only Fisher information in slices of one observable. For the full information, it
will return the truth-level information if model_file is None, and otherwise the detector-level information

9.3. madminer.fisherinformation.information module 43

MadMiner Documentation, Release 0.8.2

based on the SALLY-type score estimator saved in model_file.

Parameters

theta [ndarray] Parameter point theta at which the Fisher information matrix I_ij(theta) is
evaluated.

observable [str] Expression for the observable to be sliced. The str will be parsed by Python’s
eval() function and can use the names of the observables in the MadMiner files.

nbins [int] Number of bins in the slicing, excluding overflow bins.

histrange [tuple of float] Minimum and maximum value of the slicing in the form (min,
max). Overflow bins are always added.

model_file [str or None, optional] If None, the truth-level Fisher information is calculated.
If str, filename of a trained local score regression model that was trained on samples from
theta (see madminer.ml.Estimator). Default value: None.

luminosity [float, optional] Luminosity in pb^-1. Default value: 300000.

cuts [None or list of str, optional] Cuts. Each entry is a parseable Python expression that
returns a bool (True if the event should pass a cut, False otherwise). Default value: None.

efficiency_functions [list of str or None] Efficiencies. Each entry is a parseable Python ex-
pression that returns a float for the efficiency of one component. Default value: None.

batch_size [int, optional] If model_file is not None: Batch size. Default value: 100000.

test_split [float or None, optional] If model_file is not None: If unweighted_x_sample_file
is None, this determines the fraction of weighted events used for evaluation. If None, all
events are used (this will probably include events used during training!). Default value:
0.2.

Returns

bin_boundaries [ndarray] Observable slice boundaries.

sigma_bins [ndarray] Cross section in pb in each of the slices.

fisher_infos_rate [ndarray] Expected rate-only Fisher information for each slice. Has shape
(n_slices, n_parameters, n_parameters).

fisher_infos_full [ndarray] Expected full Fisher information for each slice. Has shape
(n_slices, n_parameters, n_parameters).

histogram_of_sigma_dsigma(theta, observable, nbins, histrange, cuts=None, efficiency_functions=None)
Fills events into histograms and calculates the cross section and first derivative for each bin

Parameters

theta [ndarray] Parameter point theta at which the Fisher information matrix I_ij(theta) is
evaluated.

observable [str] Expression for the observable to be sliced. The str will be parsed by Python’s
eval() function and can use the names of the observables in the MadMiner files.

nbins [int] Number of bins in the slicing, excluding overflow bins.

histrange [tuple of float] Minimum and maximum value of the slicing in the form (min,
max). Overflow bins are always added.

cuts [None or list of str, optional] Cuts. Each entry is a parseable Python expression that
returns a bool (True if the event should pass a cut, False otherwise). Default value: None.

44 Chapter 9. madminer.fisherinformation package

MadMiner Documentation, Release 0.8.2

efficiency_functions [list of str or None] Efficiencies. Each entry is a parseable Python ex-
pression that returns a float for the efficiency of one component. Default value: None.

Returns

bin_boundaries [ndarray] Observable slice boundaries.

sigma_bins [ndarray] Cross section in pb in each of the slices.

dsigma_bins [ndarray] Cross section in pb in each of the slices.

nuisance_constraint_information()
Builds the Fisher information term representing the Gaussian constraints on the nuisance parameters

rate_information(theta, luminosity, cuts=None, efficiency_functions=None,
include_nuisance_parameters=True)

Calculates the Fisher information in a measurement of the total cross section (without any kinematic infor-
mation).

Parameters

theta [ndarray] Parameter point theta at which the Fisher information matrix I_ij(theta) is
evaluated.

luminosity [float] Luminosity in pb^-1.

cuts [None or list of str, optional] Cuts. Each entry is a parseable Python expression that
returns a bool (True if the event should pass a cut, False otherwise). Default value: None.

efficiency_functions [list of str or None] Efficiencies. Each entry is a parseable Python ex-
pression that returns a float for the efficiency of one component. Default value: None.

include_nuisance_parameters [bool, optional] If True, nuisance parameters are taken into
account. Default value: True.

Returns

fisher_information [ndarray] Expected Fisher information in the total cross section with
shape (n_parameters, n_parameters).

fisher_information_uncertainty [ndarray] Covariance matrix of the Fisher information ma-
trix with shape (n_parameters, n_parameters, n_parameters, n_parameters), calculated
with plain Gaussian error propagation.

truth_information(theta, luminosity=300000.0, cuts=None, efficiency_functions=None,
include_nuisance_parameters=True)

Calculates the full Fisher information at parton / truth level. This is the information in an idealized mea-
surement where all parton-level particles with their charges, flavours, and four-momenta can be accessed
with perfect accuracy, i.e. the latent variables z_parton can be measured directly.

Parameters

theta [ndarray] Parameter point theta at which the Fisher information matrix I_ij(theta) is
evaluated.

luminosity [float] Luminosity in pb^-1.

cuts [None or list of str, optional] Cuts. Each entry is a parseable Python expression that
returns a bool (True if the event should pass a cut, False otherwise). Default value: None.

efficiency_functions [list of str or None] Efficiencies. Each entry is a parseable Python ex-
pression that returns a float for the efficiency of one component. Default value: None.

include_nuisance_parameters [bool, optional] If True, nuisance parameters are taken into
account. Default value: True.

9.3. madminer.fisherinformation.information module 45

MadMiner Documentation, Release 0.8.2

Returns

fisher_information [ndarray] Expected full truth-level Fisher information matrix with shape
(n_parameters, n_parameters).

fisher_information_uncertainty [ndarray] Covariance matrix of the Fisher information ma-
trix with shape (n_parameters, n_parameters, n_parameters, n_parameters), calculated
with plain Gaussian error propagation.

9.4 madminer.fisherinformation.manipulate module

madminer.fisherinformation.manipulate.profile_information(fisher_information,
remaining_components,
covariance=None,
error_propagation_n_ensemble=1000,
error_propagation_factor=0.001)

Calculates the profiled Fisher information matrix as defined in Appendix A.4 of arXiv:1612.05261.

Parameters

fisher_information [ndarray] Original n x n Fisher information.

remaining_components [list of int] List with m entries, each an int with 0 <= remain-
ing_components[i] < n. Denotes which parameters are kept, and their new order. All other
parameters or profiled out.

covariance [ndarray or None, optional] The covariance matrix of the original Fisher information
with shape (n, n, n, n). If None, the error on the profiled information is not calculated. Default
value: None.

error_propagation_n_ensemble [int, optional] If covariance is not None, this sets the number
of Fisher information matrices drawn from a normal distribution for the Monte-Carlo error
propagation. Default value: 1000.

error_propagation_factor [float, optional] If covariance is not None, this factor multiplies the
covariance of the distribution of Fisher information matrices. Smaller factors can avoid prob-
lems with ill-behaved Fisher information matrices. Default value: 1.e-3.

Returns

profiled_fisher_information [ndarray] Profiled m x m Fisher information, where the i-
th row or column corresponds to the remaining_components[i]-th row or column of
fisher_information.

profiled_fisher_information_covariance [ndarray] Covariance matrix of the profiled Fishere
information matrix with shape (m, m, m, m).

madminer.fisherinformation.manipulate.project_information(fisher_information,
remaining_components,
covariance=None)

Calculates projections of a Fisher information matrix, that is, “deletes” the rows and columns corresponding to
some parameters not of interest.

Parameters

fisher_information [ndarray] Original n x n Fisher information.

remaining_components [list of int] List with m entries, each an int with 0 <= remain-
ing_components[i] < n. Denotes which parameters are kept, and their new order. All other
parameters or projected out.

46 Chapter 9. madminer.fisherinformation package

MadMiner Documentation, Release 0.8.2

covariance [ndarray or None, optional] The covariance matrix of the original Fisher information
with shape (n, n, n, n). If None, the error on the profiled information is not calculated. Default
value: None.

Returns

projected_fisher_information [ndarray] Projected m x m Fisher information, where the i-
th row or column corresponds to the remaining_components[i]-th row or column of
fisher_information.

profiled_fisher_information_covariance [ndarray] Covariance matrix of the projected Fisher
information matrix with shape (m, m, m, m). Only returned if covariance is not None.

9.5 Module contents

9.5. Module contents 47

MadMiner Documentation, Release 0.8.2

48 Chapter 9. madminer.fisherinformation package

CHAPTER

TEN

MADMINER.LHE PACKAGE

10.1 Submodules

10.2 madminer.lhe.lhe_reader module

class madminer.lhe.lhe_reader.LHEReader(filename)
Bases: object

Detector simulation with smearing functions and simple calculation of observables.

After setting up the parameter space and benchmarks and running MadGraph and Pythia, all of which is organized
in the madminer.core.MadMiner class, the next steps are the simulation of detector effects and the calculation
of observables. Different tools can be used for these tasks, please feel free to implement the detector simulation
and analysis routine of your choice.

This class provides a simple implementation in which detector effects are modeled with smearing functions. Its
workflow consists of the following steps:

• Initializing the class with the filename of a MadMiner HDF5 file (the output of mad-
miner.core.MadMiner.save())

• Adding one or multiple event samples produced by MadGraph and Pythia in LHEProcessor.add_sample().

• Running Delphes on the samples that require it through LHEProcessor.run_delphes().

• Optionally, smearing functions for all visible particles can be defined with LHEProcessor.set_smearing().

• Defining observables through LHEProcessor.add_observable() or LHEProces-
sor.add_observable_from_function(). A simple set of default observables is provided in LHEPro-
cessor.add_default_observables()

• Optionally, cuts can be set with LHEProcessor.add_cut()

• Optionally, efficiencies can be set with LHEProcessor.add_efficiency()

• Calculating the observables from the Delphes ROOT files with LHEProcessor.analyse_delphes_samples()

• Saving the results with LHEProcessor.save()

Please see the tutorial for a detailed walk-through.

Parameters

filename [str or None, optional] Path to MadMiner file (the output of mad-
miner.core.MadMiner.save()). Default value: None.

49

MadMiner Documentation, Release 0.8.2

Methods

add_cut(definition[, pass_if_not_parsed]) Adds a cut as a string that can be parsed by Python’s
eval() function and returns a bool.

add_default_observables([n_leptons_max,
. . .])

Adds a set of simple standard observables: the four-
momenta (parameterized as E, pT, eta, phi) of the
hardest visible particles, and the missing transverse
energy.

add_efficiency(definition[,
value_if_not_parsed])

Adds an efficiency as a string that can be parsed by
Python’s eval() function and returns a bool.

add_observable(name, definition[, required, . . .]) Adds an observable as a string that can be parsed by
Python’s eval() function.

add_observable_from_function(name, fn[,
. . .])

Adds an observable defined through a function.

add_sample(lhe_filename, sam-
pled_from_benchmark)

Adds an LHE sample of simulated events.

analyse_samples([reference_benchmark, . . .]) Main function that parses the LHE samples, applies
detector effects, checks cuts, evaulate efficiencies,
and extracts the observables and weights.

reset_cuts() Resets all cuts.
reset_efficiencies() Resets all efficiencies.
reset_observables() Resets all observables.
save(filename_out[, shuffle]) Saves the observable definitions, observable values,

and event weights in a MadMiner file.
set_met_noise([abs_, rel]) Sets up additional noise in the MET variable from

shower and detector effects.
set_smearing([pdgids, . . .]) Sets up the smearing of measured momenta from

shower and detector effects.

add_cut(definition, pass_if_not_parsed=False)
Adds a cut as a string that can be parsed by Python’s eval() function and returns a bool.

Parameters

definition [str] An expression that can be parsed by Python’s eval() function and returns a
bool: True for the event to pass this cut, False for it to be rejected. In the definition, all
visible particles can be used: e, mu, j, a, and l provide lists of electrons, muons, jets,
photons, and leptons (electrons and muons combined), in each case sorted by descending
transverse momentum. met provides a missing ET object. visible and all provide access to
the sum of all visible particles and the sum of all visible particles plus MET, respectively. In
addition, MadMinerParticle have properties charge and pdg_id, which return the charge in
units of elementary charges (i.e. an electron has e[0].charge = -1.), and the PDG particle
ID. For instance, “len(e) >= 2” requires at least two electrons passing the cuts, while
“mu[0].charge > 0.” specifies that the hardest muon is positively charged.

pass_if_not_parsed [bool, optional] Whether the cut is passed if the observable cannot be
parsed. Default value: False.

Returns

None

add_default_observables(n_leptons_max=2, n_photons_max=2, n_jets_max=2, include_met=True,
include_visible_sum=True, include_numbers=True, include_charge=True)

Adds a set of simple standard observables: the four-momenta (parameterized as E, pT, eta, phi) of the

50 Chapter 10. madminer.lhe package

MadMiner Documentation, Release 0.8.2

hardest visible particles, and the missing transverse energy.

Parameters

n_leptons_max [int, optional] Number of hardest leptons for which the four-momenta are
saved. Default value: 2.

n_photons_max [int, optional] Number of hardest photons for which the four-momenta are
saved. Default value: 2.

n_jets_max [int, optional] Number of hardest jets for which the four-momenta are saved.
Default value: 2.

include_met [bool, optional] Whether the missing energy observables are stored. Default
value: True.

include_visible_sum [bool, optional] Whether observables characterizing the sum of all par-
ticles are stored. Default value: True.

include_numbers [bool, optional] Whether the number of leptons, photons, and jets is saved
as observable. Default value: True.

include_charge [bool, optional] Whether the lepton charge is saved as observable. Default
value: True.

Returns

None

add_efficiency(definition, value_if_not_parsed=1.0)
Adds an efficiency as a string that can be parsed by Python’s eval() function and returns a bool.

Parameters

definition [str] An expression that can be parsed by Python’s eval() function and returns a
floating number which reweights the event weights. In the definition, all visible particles
can be used: e, mu, j, a, and l provide lists of electrons, muons, jets, photons, and leptons
(electrons and muons combined), in each case sorted by descending transverse momen-
tum. met provides a missing ET object. visible and all provide access to the sum of all
visible particles and the sum of all visible particles plus MET, respectively. In addition,
MadMinerParticle have properties charge and pdg_id, which return the charge in units of
elementary charges (i.e. an electron has e[0].charge = -1.), and the PDG particle ID.

value_if_not_parsed [float, optional] Value if te efficiency function cannot be parsed. De-
fault value: 1.

Returns

None

add_observable(name, definition, required=False, default=None)
Adds an observable as a string that can be parsed by Python’s eval() function.

Parameters

name [str] Name of the observable. Since this name will be used in eval() calls for cuts, this
should not contain spaces or special characters.

definition [str] An expression that can be parsed by Python’s eval() function. As objects,
all particles can be used: e, mu, tau, j, a, l, v provide lists of electrons, muons, taus, jets,
photons, leptons (electrons and muons combined), and neutrinos, in each case sorted by
descending transverse momentum. met provides a missing ET object. p gives all particles
in the same order as in the LHE file (i.e. in the same order as defined in the MadGraph
process card). In addition, MadMinerParticle have properties charge and pdg_id, which

10.2. madminer.lhe.lhe_reader module 51

MadMiner Documentation, Release 0.8.2

return the charge in units of elementary charges (i.e. an electron has e[0].charge = -1.),
and the PDG particle ID. For instance, “abs(j[0].phi() - j[1].phi())” defines the azimuthal
angle between the two hardest jets.

required [bool, optional] Whether the observable is required. If True, an event will only be
retained if this observable is successfully parsed. For instance, any observable involving
“j[1]” will only be parsed if there are at least two jets passing the acceptance cuts. Default
value: False.

default [float or None, optional] If required=False, this is the placeholder value for observ-
ables that cannot be parsed. None is replaced with np.nan. Default value: None.

Returns

None

add_observable_from_function(name, fn, required=False, default=None)
Adds an observable defined through a function.

Parameters

name [str] Name of the observable. Since this name will be used in eval() calls for cuts, this
should not contain spaces or special characters.

fn [function] A function with signature observable(particles, leptons, photons, jets, met)
where all arguments are lists of MadMinerParticle instances and a float is returned. par-
ticles are the truth-level particles, ordered in the same way as in the LHE file, and no
smearing is applied. leptons, photons, jets, and met have smearing applied. The function
should raise a RuntimeError to signal that it is not defined.

required [bool, optional] Whether the observable is required. If True, an event will only be
retained if this observable is successfully parsed. For instance, any observable involving
“j[1]” will only be parsed if there are at least two jets passing the acceptance cuts. Default
value: False.

default [float or None, optional] If required=False, this is the placeholder value for observ-
ables that cannot be parsed. None is replaced with np.nan. Default value: None.

Returns

None

add_sample(lhe_filename, sampled_from_benchmark, is_background=False, k_factor=1.0,
systematics=None)

Adds an LHE sample of simulated events.

Parameters

lhe_filename [str] Path to the LHE event file (with extension ‘.lhe’ or ‘.lhe.gz’).

sampled_from_benchmark [str] Name of the benchmark that was used for sampling in this
event file (the keyword sample_benchmark of madminer.core.MadMiner.run()).

is_background [bool, optional] Whether the sample is a background sample (i.e. without
benchmark reweighting).

k_factor [float, optional] Multiplies the cross sections found in the sample. Default value:
1.

systematics [None or list of str, optional] List of systematics associated with this sample.
Default value: None.

Returns

52 Chapter 10. madminer.lhe package

MadMiner Documentation, Release 0.8.2

None

analyse_samples(reference_benchmark=None, parse_events_as_xml=True)
Main function that parses the LHE samples, applies detector effects, checks cuts, evaulate efficiencies, and
extracts the observables and weights.

Parameters

reference_benchmark [str or None, optional] The weights at the nuisance benchmarks
will be rescaled to some reference theta benchmark: dsigma(x|theta_sampling(x),nu)
-> dsigma(x|theta_ref,nu) = dsigma(x|theta_sampling(x),nu) * dsigma(x|theta_ref,0) /
dsigma(x|theta_sampling(x),0). This sets the name of the reference benchmark. If None,
the first one will be used. Default value: None.

parse_events_as_xml [bool, optional] Decides whether the LHE events are parsed with an
XML parser (more robust, but slower) or a text parser (less robust, faster). Default value:
True.

Returns

None

reset_cuts()
Resets all cuts.

reset_efficiencies()
Resets all efficiencies.

reset_observables()
Resets all observables.

save(filename_out, shuffle=True)
Saves the observable definitions, observable values, and event weights in a MadMiner file. The parameter,
benchmark, and morphing setup is copied from the file provided during initialization. Nuisance benchmarks
found in the LHE file are added.

Parameters

filename_out [str] Path to where the results should be saved.

shuffle [bool, optional] If True, events are shuffled before being saved. That’s important
when there are multiple distinct samples (e.g. signal and background). Default value:
True.

Returns

None

set_met_noise(abs_=0.0, rel=0.0)
Sets up additional noise in the MET variable from shower and detector effects.

By default, the MET is calculated based on all reconstructed visible particles, including the effect of the
smearing of these particles (set with set_smearing()). But often the MET is in fact more affected by addi-
tional soft activity than by mismeasurements of the hard particles. This function adds a Gaussian random
to each of the x and y components of the MET vector. The Gaussian has mean 0 and standard deviation
abs + rel * HT, where HT is the scalar sum of the pT of all particles in the process. Everything is given in
GeV.

Parameters

abs_ [float, optional] Absolute contribution to MET noise. Default value: 0.

rel [float, optional] Relative (to HT) contribution to MET noise. Default value: 0.

10.2. madminer.lhe.lhe_reader module 53

MadMiner Documentation, Release 0.8.2

Returns

None

set_smearing(pdgids=None, energy_resolution_abs=0.0, energy_resolution_rel=0.0,
pt_resolution_abs=0.0, pt_resolution_rel=0.0, eta_resolution_abs=0.0,
eta_resolution_rel=0.0, phi_resolution_abs=0.0, phi_resolution_rel=0.0)

Sets up the smearing of measured momenta from shower and detector effects.

This function can be called with pdgids=None, in which case the settinigs are used for all visible particles,
or with pdgids set to a list of PDG ids representing particles, for instance [11, -11] for electrons (and
positrons).

For all particles of this type, and for the energy, pT, phi, and eta, the measurement error is drawn from a
Gaussian with mean 0 and standard deviation given by (X_resolution_abs + X * X_resolution_rel). Here X
is the quantity (E, pT, phi, eta) of interest and X_resolution_abs and X_resolution_rel are the corresponding
keywords. In the case of energy and pT, values smaller than 0 will lead to a re-drawing of the measurement
error.

Instead of such numerical values, either the energy or pT resolution (but not both!) may be set to None.
In this case, this quantity is calculated from the mass of the particle and all other smeared particles. For
instance, when pt_resolution_abs is None or pt_resolution_rel is None, for the given particles the energy,
phi, and eta are smeared (according to their respective resolutions). Then the transverse momentum is
calculated from the on-shell condition p^2 = m^2, or pT = sqrt(E^2 - m^2) / cosh(eta). When this does
not have a solution, the pT is set to zero. On the other hand, when energy_resolution_abs is None or
energy_resolution_abs is None, for the given particles the pT, phi, and eta are smeared, and then the energy
is calculated as E = sqrt(pT * cosh(eta))^2 + m^2).

Parameters

pdgids [None or list of int, optional] Defines the particles these smearing functions affect.
If None, all particles are affected. Note that if set_smearing() is called multiple times for
a given particle, the earlier calls will be forgotten and only the last smearing function will
take effect. Default value: None.

energy_resolution_abs [float or None, optional] Absolute measurement uncertainty for the
energy in GeV. None means that the energy is not smeared directly, but calculated from the
on-shell condition. Default value: 0.

energy_resolution_rel [float or None, optional] Relative measurement uncertainty for the
energy. None means that the energy is not smeared directly, but calculated from the on-
shell condition. Default value: 0.

pt_resolution_abs [float or None, optional] Absolute measurement uncertainty for the pT
in GeV. None means that the pT is not smeared directly, but calculated from the on-shell
condition. Default value: 0.

pt_resolution_rel [float or None, optional] Relative measurement uncertainty for the pT.
None means that the pT is not smeared directly, but calculated from the on-shell condition.
Default value: 0.

eta_resolution_abs [float, optional] Absolute measurement uncertainty for eta. Default
value: 0.

eta_resolution_rel [float, optional] Relative measurement uncertainty for eta. Default value:
0.

phi_resolution_abs [float, optional] Absolute measurement uncertainty for phi. Default
value: 0.

54 Chapter 10. madminer.lhe package

MadMiner Documentation, Release 0.8.2

phi_resolution_rel [float, optional] Relative measurement uncertainty for phi. Default
value: 0.

Returns

None

10.3 Module contents

10.3. Module contents 55

MadMiner Documentation, Release 0.8.2

56 Chapter 10. madminer.lhe package

CHAPTER

ELEVEN

MADMINER.LIKELIHOOD PACKAGE

11.1 Submodules

11.2 madminer.likelihood.base module

class madminer.likelihood.base.BaseLikelihood(filename, disable_morphing=False,
include_nuisance_parameters=True)

Bases: madminer.analysis.dataanalyzer.DataAnalyzer

Methods

event_loader([start, end, batch_size, . . .]) Yields batches of events in the MadMiner file.
weighted_events([theta, nu, start_event, . . .]) Returns all events together with the benchmark

weights (if theta is None) or weights for a given theta.
xsec_gradients(thetas[, nus, partition, . . .]) Returns the gradient of total cross sections with re-

spect to parameters.
xsecs([thetas, nus, partition, test_split, . . .]) Returns the total cross sections for benchmarks or pa-

rameter points.

create_expected_negative_log_likelihood
create_negative_log_likelihood

create_expected_negative_log_likelihood(*args, **kwargs)

create_negative_log_likelihood(*args, **kwargs)

57

MadMiner Documentation, Release 0.8.2

11.3 madminer.likelihood.histo module

class madminer.likelihood.histo.HistoLikelihood(filename, disable_morphing=False,
include_nuisance_parameters=True)

Bases: madminer.likelihood.base.BaseLikelihood

Methods

create_expected_negative_log_likelihood(. . .)Returns a function which calculates the expected neg-
ative log likelihood for a given parameter point, eval-
uated with test data sampled according to theta_true.

create_negative_log_likelihood(x_observed[,
. . .])

Returns a function which calculates the
negative log likelihood for a given pa-
rameter point, evaluated with a dataset
(x_observed,n_observed,x_observed_weights).

event_loader([start, end, batch_size, . . .]) Yields batches of events in the MadMiner file.
weighted_events([theta, nu, start_event, . . .]) Returns all events together with the benchmark

weights (if theta is None) or weights for a given theta.
xsec_gradients(thetas[, nus, partition, . . .]) Returns the gradient of total cross sections with re-

spect to parameters.
xsecs([thetas, nus, partition, test_split, . . .]) Returns the total cross sections for benchmarks or pa-

rameter points.

create_expected_negative_log_likelihood(theta_true, nu_true, observables=None,
score_components=None, include_xsec=True,
luminosity=300000.0, n_asimov=None, mode='sampled',
n_histo_toys=100000, model_file=None, hist_bins=None,
thetas_binning=None, test_split=None)

Returns a function which calculates the expected negative log likelihood for a given parameter point, eval-
uated with test data sampled according to theta_true.

Parameters

theta_true [ndarray] Specifies the physical parameters according to which the test data is
sampled.

nu_true [ndarray] Specifies the nuisance parameters according to which the test data is sam-
pled.

observables [list of str or None , optional] Kinematic variables used in the histograms. The
names are the same as used for instance in DelphesReader.

score_components [None or list of int, optional] Defines the score components used. De-
fault value: None.

include_xsec [bool, optional] Whether the Poisson likelihood representing the total number
of events is included in the analysis. Default value: True.

luminosity [float, optional] Integrated luminosity in pb^{-1} assumed in the analysis. De-
fault value: 300000.

n_asimov [int or None, optional] Size of the Asimov sample. If None, all weighted events
in the MadMiner file are used. Default value: None.

mode [{“weighted” , “sampled”} , optional] If “sampled”, for each evaluation of the likeli-
hood function, a separate set of events are sampled and histogram is created to construct

58 Chapter 11. madminer.likelihood package

MadMiner Documentation, Release 0.8.2

the likelihood function. If “weighted”, first a set of weighted events is sampled which is
then used to create histograms. Default value: “sampled”

n_histo_toys [int or None, optional] Number of events drawn to construct the histograms
used. If None and weighted_histo is True, all events in the training fraction of the Mad-
Miner file are used. If None and weighted_histo is False, 100000 events are used. Default
value: 100000.

model_file [str or None, optional] Filename of a saved neural network estimating the score.
Required if score_components is not None. Default value: None.

hist_bins [int or list of (int or ndarray) or None, optional] Defines the histogram binning. If
int, gives the number of bins automatically chosen for each summary statistic. If list, each
entry corresponds to one summary statistic (e.g. kinematic variable specified by hist_vars);
an int entry corresponds to the number of automatically chosen bins, an ndarray specifies
the bin edges along this dimension explicitly. If None, the bins are chosen according to
the defaults: for one summary statistic the default is 25 bins, for 2 it’s 8 bins along each
direction, for more it’s 5 per dimension. Default value: None.

thetas_binning [list of ndarray or None] Specifies the parameter points used to determine
the optimal binning. If none, theta_true will be used. Default value : None

test_split :

Returns

negative_log_likelihood [likelihood] Function that evaluates the negative log likelihood for
a given parameter point

create_negative_log_likelihood(x_observed, observables=None, score_components=None,
n_observed=None, x_observed_weights=None, include_xsec=True,
luminosity=300000.0, mode='sampled', n_histo_toys=100000,
model_file=None, hist_bins=None, thetas_binning=None,
test_split=None)

Returns a function which calculates the negative log likelihood for a given parameter point, evaluated with
a dataset (x_observed,n_observed,x_observed_weights).

Parameters

x_observed [list of ndarray] Set of event observables with shape (n_events, n_observables).

observables [list of str or None , optional] Kinematic variables used in the histograms. The
names are the same as used for instance in DelphesReader.

score_components [None or list of int, optional] Defines the score components used. De-
fault value: None.

n_observed [int or None , optional] If int, number of observed events. If None, n_observed
is defined by the length of x_observed. Default: None.

x_observed_weights [list of float or None , optional] List of event weights with shape
(n_events). If None, all events have equal weights. Default: None.

include_xsec [bool, optional] Whether the Poisson likelihood representing the total number
of events is included in the analysis. Default value: True.

luminosity [float, optional] Integrated luminosity in pb^{-1} assumed in the analysis. De-
fault value: 300000.

mode [{“weighted” , “sampled”, “histo”} , optional] If “sampled”, for each evaluation of
the likelihood function, a separate set of events are sampled and histogram is created to

11.3. madminer.likelihood.histo module 59

MadMiner Documentation, Release 0.8.2

construct the likelihood function. If “weighted”, first a set of weighted events is sampled
which is then used to create histograms. Default value: “sampled”

n_histo_toys [int or None, optional] Number of events drawn to construct the histograms
used. If None and weighted_histo is True, all events in the training fraction of the Mad-
Miner file are used. If None and weighted_histo is False, 100000 events are used. Default
value: 100000.

model_file [str or None, optional] Filename of a saved neural network estimating the score.
Required if score_components is not None. Default value: None.

hist_bins [int or list of (int or ndarray) or None, optional] Defines the histogram binning. If
int, gives the number of bins automatically chosen for each summary statistic. If list, each
entry corresponds to one summary statistic (e.g. kinematic variable specified by hist_vars);
an int entry corresponds to the number of automatically chosen bins, an ndarray specifies
the bin edges along this dimension explicitly. If None, the bins are chosen according to
the defaults: for one summary statistic the default is 25 bins, for 2 it’s 8 bins along each
direction, for more it’s 5 per dimension. Default value: None.

thetas_binning [list of ndarray or None] Specifies the parameter points used to determine
the optimal binning. This is requires if hist_bins doesn’t already fully specify the binning
of the histogram. Default value : None

test_split :

Returns

negative_log_likelihood [likelihood] Function that evaluates the negative log likelihood for
a given parameter point

11.4 madminer.likelihood.manipulate module

madminer.likelihood.manipulate.fix_params(negative_log_likelihood, theta, fixed_components=None)
Function that reduces the dimensionality of a likelihood function by fixing some of the components.

Parameters

negative_log_likelihood [likelihood] Function returned by Likelihood class (for example Neu-
ralLikelihood.create_expected_negative_log_likelihood()`) which takes an n-dimensional
input parameter.

theta [list of float] m-dimensional vector of coordinate which will be fixed.

fixed_components [list of int or None, optional.] m-dimensional vector of coordinate indices
provided in theta. fixed_components=[0,1] will fix the 1st and 2nd component of the param-
eter point. If None, uses [0, . . . , m-1].

Returns

constrained_nll_negative_log_likelihood [likelihood] Constrained likelihood function which
takes an n-m dimensional input parameter.

madminer.likelihood.manipulate.profile_log_likelihood(negative_log_likelihood,
remaining_components=None,
grid_ranges=None, grid_resolutions=25,
thetas_eval=None, theta_start=None,
dof=None, method='TNC')

Takes a likelihood function depending on N parameters, and evaluates for a set of M-dimensional parameter
points (either grid or explicitly specified) while the remaining N-M parameters are profiled over.

60 Chapter 11. madminer.likelihood package

MadMiner Documentation, Release 0.8.2

Parameters

negative_log_likelihood [likelihood] Function returned by Likelihood class (for example Neu-
ralLikelihood.create_expected_negative_log_likelihood()`).

remaining_components [list of int or None , optional] List with M entries, each an int with 0 <=
remaining_components[i] < N. Denotes which parameters are kept, and their new order. All
other parameters or projected out (set to zero). If None, all components are kept. Default:
None

grid_ranges [list of (tuple of float) or None, optional] Specifies the boundaries of the parameter
grid on which the p-values are evaluated. It should be [(min, max), (min, max), . . . , (min,
max)], where the list goes over all parameters and min and max are float. If None, thetas_eval
has to be given. Default: None.

grid_resolutions [int or list of int, optional] Resolution of the parameter space grid on which the
p-values are evaluated. If int, the resolution is the same along every dimension of the hyper-
cube. If list of int, the individual entries specify the number of points along each parameter
individually. Doesn’t have any effect if grid_ranges is None. Default value: 25.

thetas_eval [ndarray or None , optional] Manually specifies the parameter point at which the
likelihood and p-values are evaluated. If None, grid_ranges and resolution are used instead
to construct a regular grid. Default value: None.

theta_start [ndarray or None , optional] Manually specifies a parameter point which is the start-
ing point for the minimization algorithm which find the maximum likelihood point. If None,
theta_start = 0 is used. Default is None.

dof [int or None, optional] If not None, sets the number of parameters for the calculation of the
p-values. If None, the overall number of parameters is used. Default value: None.

method [{“TNC”, ” L-BFGS-B”} , optional] Mimization method used. Default value: “TNC”

Returns

parameter_grid [ndarray] Parameter points at which the p-values are evaluated with shape
(n_grid_points, n_parameters).

p_values [ndarray] Observed p-values for each parameter point on the grid, with shape
(n_grid_points,).

mle [int] Index of the parameter point with the best fit (largest p-value / smallest -2 log likelihood
ratio).

log_likelihood_ratio [ndarray or None] log likelihood ratio based only on kinematics for each
point of the grid, with shape (n_grid_points,).

madminer.likelihood.manipulate.project_log_likelihood(negative_log_likelihood,
remaining_components=None,
grid_ranges=None, grid_resolutions=25,
dof=None, thetas_eval=None)

Takes a likelihood function depending on N parameters, and evaluates for a set of M-dimensional parameter
points (either grid or explicitly specified) while the remaining N-M parameters are set to zero.

Parameters

negative_log_likelihood [likelihood] Function returned by Likelihood class (for example Neu-
ralLikelihood.create_expected_negative_log_likelihood()`).

remaining_components [list of int or None , optional] List with M entries, each an int with 0 <=
remaining_components[i] < N. Denotes which parameters are kept, and their new order. All

11.4. madminer.likelihood.manipulate module 61

MadMiner Documentation, Release 0.8.2

other parameters or projected out (set to zero). If None, all components are kept. Default:
None

grid_ranges [list of (tuple of float) or None, optional] Specifies the boundaries of the parameter
grid on which the p-values are evaluated. It should be [(min, max), (min, max), . . . , (min,
max)], where the list goes over all parameters and min and max are float. If None, thetas_eval
has to be given. Default: None.

grid_resolutions [int or list of int, optional] Resolution of the parameter space grid on which the
p-values are evaluated. If int, the resolution is the same along every dimension of the hyper-
cube. If list of int, the individual entries specify the number of points along each parameter
individually. Doesn’t have any effect if grid_ranges is None. Default value: 25.

dof [int or None, optional] If not None, sets the number of parameters for the calculation of the
p-values. If None, the overall number of parameters is used. Default value: None.

thetas_eval [ndarray or None , optional] Manually specifies the parameter point at which the
likelihood and p-values are evaluated. If None, grid_ranges and resolution are used instead
to construct a regular grid. Default value: None.

Returns

parameter_grid [ndarray] Parameter points at which the p-values are evaluated with shape
(n_grid_points, n_parameters).

p_values [ndarray] Observed p-values for each parameter point on the grid, with shape
(n_grid_points,).

mle [int] Index of the parameter point with the best fit (largest p-value / smallest -2 log likelihood
ratio).

log_likelihood_ratio [ndarray or None] log likelihood ratio based only on kinematics for each
point of the grid, with shape (n_grid_points,).

11.5 madminer.likelihood.neural module

class madminer.likelihood.neural.NeuralLikelihood(filename, disable_morphing=False,
include_nuisance_parameters=True)

Bases: madminer.likelihood.base.BaseLikelihood

Methods

event_loader([start, end, batch_size, . . .]) Yields batches of events in the MadMiner file.
weighted_events([theta, nu, start_event, . . .]) Returns all events together with the benchmark

weights (if theta is None) or weights for a given theta.
xsec_gradients(thetas[, nus, partition, . . .]) Returns the gradient of total cross sections with re-

spect to parameters.
xsecs([thetas, nus, partition, test_split, . . .]) Returns the total cross sections for benchmarks or pa-

rameter points.

create_expected_negative_log_likelihood
create_negative_log_likelihood

62 Chapter 11. madminer.likelihood package

MadMiner Documentation, Release 0.8.2

create_expected_negative_log_likelihood(model_file, theta_true, nu_true, include_xsec=True,
luminosity=300000.0, n_asimov=None, mode='sampled',
n_weighted=10000, xsec_mode='interpol')

create_negative_log_likelihood(model_file, x_observed, n_observed=None,
x_observed_weights=None, include_xsec=True,
luminosity=300000.0, mode='weighted', n_weighted=10000,
xsec_mode='interpol')

11.6 Module contents

11.6. Module contents 63

MadMiner Documentation, Release 0.8.2

64 Chapter 11. madminer.likelihood package

CHAPTER

TWELVE

MADMINER.LIMITS PACKAGE

12.1 Submodules

12.2 madminer.limits.asymptotic_limits module

class madminer.limits.asymptotic_limits.AsymptoticLimits(filename=None,
include_nuisance_parameters=False)

Bases: madminer.analysis.dataanalyzer.DataAnalyzer

Statistical inference based on asymptotic properties of the likelihood ratio as test statistics.

This class provides two high-level functions:

• AsymptoticLimits.observed_limits() calculates p-values over a grid in parameter space for a given set of
observed data.

• AsymptoticLimits.expected_limits() calculates expected p-values over a grid in parameter space based on
“Asimov data”, a large hypothetical data set drawn from a given parameter point. This method is typically
used to define expected exclusion limits or significances.

Both functions support inference based on. . .

• histograms of kinematic observables,

• based on histograms of score vectors estimated with the madminer.ml.ScoreEstimator class (SALLY and
SALLINO techniques),

• based on likelihood or likelihood ratio functions estimated with the madminer.ml.LikelihoodEstimator and
madminer.ml.ParameterizedRatioEstimator classes (NDE, SCANDAL, CARL, RASCAL, ALICES, and
so on).

Currently, this class requires a morphing setup. It does not yet support nuisance parameters.

Parameters

filename [str] Path to MadMiner file (for instance the output of mad-
miner.delphes.DelphesProcessor.save()).

include_nuisance_parameters [bool, optional] If True, nuisance parameters are taken into ac-
count. Currently not implemented. Default value: False.

65

MadMiner Documentation, Release 0.8.2

Methods

asymptotic_p_value(log_likelihood_ratio[, dof]) Calculates the p-value corresponding to a given log
likelihood ratio and number of degrees of freedom
assuming the asymptotic approximation.

event_loader([start, end, batch_size, . . .]) Yields batches of events in the MadMiner file.
expected_limits(mode, theta_true[, . . .]) Calculates expected p-values over a grid in parameter

space.
observed_limits(mode, x_observed[, . . .]) Calculates p-values over a grid in parameter space

based on a given set of observed events.
weighted_events([theta, nu, start_event, . . .]) Returns all events together with the benchmark

weights (if theta is None) or weights for a given theta.
xsec_gradients(thetas[, nus, partition, . . .]) Returns the gradient of total cross sections with re-

spect to parameters.
xsecs([thetas, nus, partition, test_split, . . .]) Returns the total cross sections for benchmarks or pa-

rameter points.

asymptotic_p_value(log_likelihood_ratio, dof=None)
Calculates the p-value corresponding to a given log likelihood ratio and number of degrees of freedom
assuming the asymptotic approximation.

Parameters

log_likelihood_ratio [ndarray] Log likelihood ratio (without the factor -2)

dof [int or None, optional] Number of parameters / degrees of freedom. None means the
overall number of parameters is used. Default value: None.

Returns

p_values [ndarray] p-values.

expected_limits(mode, theta_true, grid_ranges=None, grid_resolutions=25, include_xsec=True,
model_file=None, hist_vars=None, score_components=None, hist_bins=None,
thetaref=None, luminosity=300000.0, weighted_histo=True, n_histo_toys=100000,
histo_theta_batchsize=1000, dof=None, test_split=0.2, return_histos=True,
return_asimov=False, fix_adaptive_binning='auto-grid',
sample_only_from_closest_benchmark=True, postprocessing=None, n_asimov=None,
n_binning_toys=100000, thetas_eval=None)

Calculates expected p-values over a grid in parameter space.

theta_true specifies which parameter point is assumed to be true. Based on this parameter point, the function
generates a large artificial “Asimov data set”. p-values are then calculated with frequentist hypothesis tests
using the likelihood ratio as test statistic. The asymptotic approximation is used, see https://arxiv.org/abs/
1007.1727.

Depending on the keyword mode, the likelihood ratio is calculated with one of several different methods:

• With mode=”rate”, MadMiner only calculates the Poisson likelihood of the total number of events.

• With mode=”histo”, the kinematic likelihood is estimated with histograms of a small number of ob-
servables given by the keyword hist_vars. hist_bins determines the binning of the histograms. in-
clude_xsec sets whether the Poisson likelihood of the total number of events is included or not.

• With mode=”ml”, the likelihood ratio is estimated with a parameterized neural network. model_file
has to point to the filename of a saved LikelihoodEstimator or ParameterizedRatioEstimator instance or
a corresponding Ensemble (i.e. be the same filename used when calling estimator.save()). include_xsec
sets whether the Poisson likelihood of the total number of events is included or not.

66 Chapter 12. madminer.limits package

https://arxiv.org/abs/1007.1727
https://arxiv.org/abs/1007.1727

MadMiner Documentation, Release 0.8.2

• With mode=”sally”, the likelihood ratio is estimated with histograms of the components of the esti-
mated score vector. model_file has to point to the filename of a saved ScoreEstimator instance. With
score_components, the histogram can be restricted to some components of the score. hist_bins defines
the binning of the histograms. include_xsec sets whether the Poisson likelihood of the total number of
events is included or not.

• With mode=”adaptive-sally”, the likelihood ratio is estimated with histograms of the components
of the estimated score vector. The approach is essentially the same as for “sally”, but the histogram
binning is optimized for every parameter point by adding a new h = score * (theta - thetaref) dimension
to the histogram. include_xsec sets whether the Poisson likelihood of the total number of events is
included or not.

• With mode=”sallino”, the likelihood ratio is estimated with one-dimensional histograms of the scalar
variable h = score * (theta - thetaref) for each point theta along the parameter grid. model_file has to
point to the filename of a saved ScoreEstimator instance. hist_bins defines the binning of the histogram.
include_xsec sets whether the Poisson likelihood of the total number of events is included or not.

MadMiner calculates one p-value for every parameter point on an evenly spaced grid specified by
grid_ranges and grid_resolutions. For instance, in a three-dimensional parameter space, grid_ranges=[(-
1., 1.), (-2., 2.), (-3., 3.)] and grid_resolutions=[10,10,10] will start the calculation along 10^3 parameter
points in a cube with edges (-1, 1) in the first parameter and so on.

Parameters

mode [{“rate”, “histo”, “ml”, “sally”, “sallino”, “adaptive-sally”}] Defines how the likeli-
hood ratio test statistic is calculated. See above.

theta_true [ndarray] Parameter point assumed to be true to calculate the Asimov data.

grid_ranges [list of (tuple of float) or None, optional] Specifies the boundaries of the param-
eter grid on which the p-values are evaluated. It should be [(min, max), (min, max), . . . ,
(min, max)], where the list goes over all parameters and min and max are float. If None,
thetas_eval has to be given. Default: None.

grid_resolutions [int or list of int, optional] Resolution of the parameter space grid on which
the p-values are evaluated. If int, the resolution is the same along every dimension of the
hypercube. If list of int, the individual entries specify the number of points along each
parameter individually. Default value: 25.

include_xsec [bool, optional] Whether the Poisson likelihood representing the total number
of events is included in the analysis. Default value: True.

model_file [str or None, optional] Filename of a saved neural network estimating the like-
lihood, likelihood ratio, or score. Required if mode is anything except “rate” or “histo”.
Default value: None.

hist_vars [list of str or None, optional] Kinematic variables used in the histograms when
mode is “histo”. The names are the same as used for instance in DelphesReader. Default
value: None.

score_components [None or list of int, optional] Defines the score components used when
mode is “sally” or “adaptive-sally”. Default value: None.

hist_bins [int or list of (int or ndarray) or None, optional] Defines the histogram binning
when mode is “histo”, “sally”, “adaptive-sally”, or “sallino”. If int, gives the number of
bins automatically chosen for each summary statistic. If list, each entry corresponds to one
summary statistic (e.g. kinematic variable specified by hist_vars or estimated score com-
ponent); an int entry corresponds to the number of automatically chosen bins, an ndarray
specifies the bin edges along this dimension explicitly. If None, the bins are chosen accord-
ing to the defaults: for one summary statistic the default is 25 bins, for 2 it’s 8 bins along

12.2. madminer.limits.asymptotic_limits module 67

MadMiner Documentation, Release 0.8.2

each direction, for more it’s 5 per dimension. Default value: None.

thetaref [ndarray or None, optional] Defines the reference parameter point at which the score
is evaluated for mode “sallino” or “adaptive-sally”. If None, the origin in parameter space,
[0., 0., . . . , 0.], is used. Default value: None.

luminosity [float, optional] Integrated luminosity in pb^{-1} assumed in the analysis. De-
fault value: 300000.

weighted_histo [bool, optional] If True, the histograms used for the modes “histo”, “sally”,
“sallino”, and “adaptive-sally” use one set of weighted events to construct the histograms at
every point along the parameter grid, only with different weights for each parameter point
on the grid. If False, independent unweighted event samples are drawn for each parameter
point on the grid. Default value: True.

n_histo_toys [int or None, optional] Number of events drawn to construct the histograms
used for the modes “histo”, “sally”, “sallino”, and “adaptive-sally”. If None and
weighted_histo is True, all events in the training fraction of the MadMiner file are used. If
None and weighted_histo is False, 100000 events are used. Default value: 100000.

histo_theta_batchsize [int or None, optional] Number of histograms constructed in parallel
for the modes “histo”, “sally”, “sallino”, and “adaptive-sally” and if weighted_histo is True.
A larger number speeds up the calculation, but requires more memory. Default value: 1000.

dof [int or None, optional] If not None, sets the number of parameters for the calculation of
the p-values. If None, the overall number of parameters is used. Default value: None.

test_split [float, optional] Fraction of weighted events in the MadMiner file reserved for
evaluation. Default value: 0.2.

return_histos [bool, optional] If True and if mode is “histo”, “sally”, “adaptive-sally”, or
“sallino”, the function returns histogram objects for each point along the grid.

fix_adaptive_binning [[False, “center”, “grid”, “auto-grid”, “auto-center”], optional] If not
False and if mode is “histo”, “sally”, “adaptive-sally”, or “sallino”, the automatic histogram
binning is the same for every point along the parameter grid. For “center”, the central point
in the parameter grid is used to determine the binning, for “grid” all points in the parameter
grid are combined for this. For “auto-grid” or “auto-center”, this option is turned on if mode
is “histo” or “sally”, but not for “adaptive-sally” or “sallino”. Default value: “auto-grid”.

sample_only_from_closest_benchmark [bool, optional] If True, only events originally
generated from the closest benchmarks are used when generating the Asimov data (and,
if weighted_histo is False, the histogram data). Default value: True.

return_asimov [bool, optional] Whether the values of the summary statistics in the Asimov
(“expected observed”) data set are returned. Default value: False.

postprocessing [None or function, optional] If not None, points to a function that processes
the summary statistics before being fed into histograms. Default value: None.

n_binning_toys [int or None, optional] Number of toy events used to determine the binning
of adaptive histograms. Default value: 100000.

n_asimov [int or None, optional] Size of the Asimov sample. If None, all weighted events
in the MadMiner file are used. Default value: None.

thetas_eval [ndarray or None] Manually specifies the parameter point at which the likeli-
hood and p-values are evaluated. If None, grid_ranges and resolution are used instead to
construct a regular grid. Default value: None.

Returns

68 Chapter 12. madminer.limits package

MadMiner Documentation, Release 0.8.2

parameter_grid [ndarray] Parameter points at which the p-values are evaluated with shape
(n_grid_points, n_parameters).

p_values [ndarray] Observed p-values for each parameter point on the grid, with shape
(n_grid_points,).

mle [int] Index of the parameter point with the best fit (largest p-value / smallest -2 log like-
lihood ratio).

log_likelihood_ratio_kin [ndarray or None] log likelihood ratio based only on kinematics
for each point of the grid, with shape (n_grid_points,).

log_likelihood_rate [ndarray or None] log likelihood based only on the total rate for each
point of the grid, with shape (n_grid_points,).

histos [None or list of Histogram] None if return_histos is False. Otherwise a list of his-
togram objects for each point on the grid. This can be useful for debugging or for plotting
the histograms.

observed_limits(mode, x_observed, grid_ranges=None, grid_resolutions=25, include_xsec=True,
model_file=None, hist_vars=None, score_components=None, hist_bins=None,
thetaref=None, luminosity=300000.0, weighted_histo=True, n_histo_toys=100000,
histo_theta_batchsize=1000, n_observed=None, dof=None, test_split=0.2,
return_histos=True, return_observed=False, fix_adaptive_binning='auto-grid',
postprocessing=None, n_binning_toys=100000, thetas_eval=None)

Calculates p-values over a grid in parameter space based on a given set of observed events.

x_observed specifies the observed data as an array of observables, using the same observables and their
order as used throughout the MadMiner workflow.

The p-values with frequentist hypothesis tests using the likelihood ratio as test statistic. The asymptotic
approximation is used, see https://arxiv.org/abs/1007.1727.

Depending on the keyword mode, the likelihood ratio is calculated with one of several different methods:

• With mode=”rate”, MadMiner only calculates the Poisson likelihood of the total number of events.

• With mode=”histo”, the kinematic likelihood is estimated with histograms of a small number of ob-
servables given by the keyword hist_vars. hist_bins determines the binning of the histograms. in-
clude_xsec sets whether the Poisson likelihood of the total number of events is included or not.

• With mode=”ml”, the likelihood ratio is estimated with a parameterized neural network. model_file
has to point to the filename of a saved LikelihoodEstimator or ParameterizedRatioEstimator instance or
a corresponding Ensemble (i.e. be the same filename used when calling estimator.save()). include_xsec
sets whether the Poisson likelihood of the total number of events is included or not.

• With mode=”sally”, the likelihood ratio is estimated with histograms of the components of the esti-
mated score vector. model_file has to point to the filename of a saved ScoreEstimator instance. With
score_components, the histogram can be restricted to some components of the score. hist_bins defines
the binning of the histograms. include_xsec sets whether the Poisson likelihood of the total number of
events is included or not.

• With mode=”adaptive-sally”, the likelihood ratio is estimated with histograms of the components
of the estimated score vector. The approach is essentially the same as for “sally”, but the histogram
binning is optimized for every parameter point by adding a new h = score * (theta - thetaref) dimension
to the histogram. include_xsec sets whether the Poisson likelihood of the total number of events is
included or not.

• With mode=”sallino”, the likelihood ratio is estimated with one-dimensional histograms of the scalar
variable h = score * (theta - thetaref) for each point theta along the parameter grid. model_file has to

12.2. madminer.limits.asymptotic_limits module 69

https://arxiv.org/abs/1007.1727

MadMiner Documentation, Release 0.8.2

point to the filename of a saved ScoreEstimator instance. hist_bins defines the binning of the histogram.
include_xsec sets whether the Poisson likelihood of the total number of events is included or not.

MadMiner calculates one p-value for every parameter point on an evenly spaced grid specified by
grid_ranges and grid_resolutions. For instance, in a three-dimensional parameter space, grid_ranges=[(-
1., 1.), (-2., 2.), (-3., 3.)] and grid_resolutions=[10,10,10] will start the calculation along 10^3 parameter
points in a cube with edges (-1, 1) in the first parameter and so on.

Parameters

mode [{“rate”, “histo”, “ml”, “sally”, “sallino”, “adaptive-sally”}] Defines how the likeli-
hood ratio test statistic is calculated. See above.

x_observed [ndarray] Observed data with shape (n_events, n_observables). The observables
have to be the same used throughout the MadMiner analysis, for instance specified in the
DelphesReader class with add_observables.

grid_ranges [list of (tuple of float) or None, optional] Specifies the boundaries of the param-
eter grid on which the p-values are evaluated. It should be [(min, max), (min, max), . . . ,
(min, max)], where the list goes over all parameters and min and max are float. If None,
thetas_eval has to be given. Default: None.

grid_resolutions [int or list of int, optional] Resolution of the parameter space grid on which
the p-values are evaluated. If int, the resolution is the same along every dimension of the
hypercube. If list of int, the individual entries specify the number of points along each
parameter individually. Doesn’t have any effect if grid_ranges is None. Default value: 25.

include_xsec [bool, optional] Whether the Poisson likelihood representing the total number
of events is included in the analysis. Default value: True.

model_file [str or None, optional] Filename of a saved neural network estimating the like-
lihood, likelihood ratio, or score. Required if mode is anything except “rate” or “histo”.
Default value: None.

hist_vars [list of str or None, optional] Kinematic variables used in the histograms when
mode is “histo”. The names are the same as used for instance in DelphesReader. Default
value: None.

score_components [None or list of int, optional] Defines the score components used when
mode is “sally” or “adaptive-sally”. Default value: None.

hist_bins [int or list of (int or ndarray) or None, optional] Defines the histogram binning
when mode is “histo”, “sally”, “adaptive-sally”, or “sallino”. If int, gives the number of
bins automatically chosen for each summary statistic. If list, each entry corresponds to one
summary statistic (e.g. kinematic variable specified by hist_vars or estimated score com-
ponent); an int entry corresponds to the number of automatically chosen bins, an ndarray
specifies the bin edges along this dimension explicitly. If None, the bins are chosen accord-
ing to the defaults: for one summary statistic the default is 25 bins, for 2 it’s 8 bins along
each direction, for more it’s 5 per dimension. Default value: None.

thetaref [ndarray or None, optional] Defines the reference parameter point at which the score
is evaluated for mode “sallino” or “adaptive-sally”. If None, the origin in parameter space,
[0., 0., . . . , 0.], is used. Default value: None.

luminosity [float, optional] Integrated luminosity in pb^{-1} assumed in the analysis. De-
fault value: 300000.

weighted_histo [bool, optional] If True, the histograms used for the modes “histo”, “sally”,
“sallino”, and “adaptive-sally” use one set of weighted events to construct the histograms at
every point along the parameter grid, only with different weights for each parameter point

70 Chapter 12. madminer.limits package

MadMiner Documentation, Release 0.8.2

on the grid. If False, independent unweighted event samples are drawn for each parameter
point on the grid. Default value: True.

n_histo_toys [int or None, optional] Number of events drawn to construct the histograms
used for the modes “histo”, “sally”, “sallino”, and “adaptive-sally”. If None and
weighted_histo is True, all events in the training fraction of the MadMiner file are used. If
None and weighted_histo is False, 100000 events are used. Default value: 100000.

histo_theta_batchsize [int or None, optional] Number of histograms constructed in parallel
for the modes “histo”, “sally”, “sallino”, and “adaptive-sally” and if weighted_histo is True.
A larger number speeds up the calculation, but requires more memory. Default value: 1000.

n_observed [int or None, optional] If not None, the likelihood ratio is rescaled to this number
of observed events before calculating p-values. Default value: None.

dof [int or None, optional] If not None, sets the number of parameters for the calculation of
the p-values. If None, the overall number of parameters is used. Default value: None.

test_split [float, optional] Fraction of weighted events in the MadMiner file reserved for
evaluation. Default value: 0.2.

return_histos [bool, optional] If True and if mode is “histo”, “sally”, “adaptive-sally”, or
“sallino”, the function returns histogram objects for each point along the grid.

fix_adaptive_binning [[False, “center”, “grid”, “auto-grid”, “auto-center”], optional] If not
False and if mode is “histo”, “sally”, “adaptive-sally”, or “sallino”, the automatic histogram
binning is the same for every point along the parameter grid. For “center”, the central point
in the parameter grid is used to determine the binning, for “grid” all points in the parameter
grid are combined for this. For “auto-grid” or “auto-center”, this option is turned on if mode
is “histo” or “sally”, but not for “adaptive-sally” or “sallino”. Default value: “auto-grid”.

return_observed [bool, optional] Whether the observed values of the summary statistics are
returned. Default value: False.

postprocessing [None or function] If not None, points to a function that processes the sum-
mary statistics before being fed into histograms. Default value: None.

n_binning_toys [int or None] Number of toy events used to determine the binning of adaptive
histograms. Default value: 100000.

thetas_eval [ndarray or None] Manually specifies the parameter point at which the likeli-
hood and p-values are evaluated. If None, grid_ranges and resolution are used instead to
construct a regular grid. Default value: None.

Returns

parameter_grid [ndarray] Parameter points at which the p-values are evaluated with shape
(n_grid_points, n_parameters).

p_values [ndarray] Observed p-values for each parameter point on the grid, with shape
(n_grid_points,).

mle [int] Index of the parameter point with the best fit (largest p-value / smallest -2 log like-
lihood ratio).

log_likelihood_ratio_kin [ndarray or None] log likelihood ratio based only on kinematics
for each point of the grid, with shape (n_grid_points,).

log_likelihood_rate [ndarray or None] log likelihood based only on the total rate for each
point of the grid, with shape (n_grid_points,).

12.2. madminer.limits.asymptotic_limits module 71

MadMiner Documentation, Release 0.8.2

histos [None or list of Histogram] None if return_histos is False. Otherwise a list of his-
togram objects for each point on the grid. This can be useful for debugging or for plotting
the histograms.

12.3 Module contents

72 Chapter 12. madminer.limits package

CHAPTER

THIRTEEN

MADMINER.ML PACKAGE

13.1 Submodules

13.2 madminer.ml.base module

class madminer.ml.base.ConditionalEstimator(features=None, n_hidden=(100,), activation='tanh',
dropout_prob=0.0)

Bases: madminer.ml.base.Estimator

Abstract class for estimator that is conditional on theta. Subclassed by ParameterizedRatioEstimator, DoublePa-
rameterizedRatioEstimator, and LikelihoodEstimator (but not ScoreEstimator).

Adds functionality to rescale parameters.

Methods

calculate_fisher_information(x[, theta, . . .]) Calculates the expected Fisher information matrix
based on the kinematic information in a given num-
ber of events.

evaluate_log_likelihood(*args, **kwargs) Log likelihood estimation.
evaluate_log_likelihood_ratio(*args,
**kwargs)

Log likelihood ratio estimation.

evaluate_score(*args, **kwargs) Score estimation.
load(filename) Loads a trained model from files.
save(filename[, save_model]) Saves the trained model to four files: a JSON file

with the settings, a pickled pyTorch state dict file, and
numpy files for the mean and variance of the inputs
(used for input scaling).

evaluate
initialize_input_transform
initialize_parameter_transform
train

initialize_parameter_transform(theta, transform=True, overwrite=True)

load(filename)
Loads a trained model from files.

73

MadMiner Documentation, Release 0.8.2

Parameters

filename [str] Path to the files. ‘_settings.json’ and ‘_state_dict.pl’ will be added.

Returns

None

save(filename, save_model=False)
Saves the trained model to four files: a JSON file with the settings, a pickled pyTorch state dict file, and
numpy files for the mean and variance of the inputs (used for input scaling).

Parameters

filename [str] Path to the files. ‘_settings.json’ and ‘_state_dict.pl’ will be added.

save_model [bool, optional] If True, the whole model is saved in addition to the state dict.
This is not necessary for loading it again with Estimator.load(), but can be useful for de-
bugging, for instance to plot the computational graph.

Returns

None

class madminer.ml.base.Estimator(features=None, n_hidden=(100,), activation='tanh', dropout_prob=0.0)
Bases: object

Abstract class for any ML estimator. Subclassed by ParameterizedRatioEstimator, DoubleParameterizedRatioEs-
timator, ScoreEstimator, and LikelihoodEstimator.

Each instance of this class represents one neural estimator. The most important functions are:

• Estimator.train() to train an estimator. The keyword method determines the inference technique and whether
a class instance represents a single-parameterized likelihood ratio estimator, a doubly-parameterized like-
lihood ratio estimator, or a local score estimator.

• Estimator.evaluate() to evaluate the estimator.

• Estimator.save() to save the trained model to files.

• Estimator.load() to load the trained model from files.

Please see the tutorial for a detailed walk-through.

Methods

calculate_fisher_information(x[, theta, . . .]) Calculates the expected Fisher information matrix
based on the kinematic information in a given num-
ber of events.

evaluate_log_likelihood(*args, **kwargs) Log likelihood estimation.
evaluate_log_likelihood_ratio(*args,
**kwargs)

Log likelihood ratio estimation.

evaluate_score(*args, **kwargs) Score estimation.
load(filename) Loads a trained model from files.
save(filename[, save_model]) Saves the trained model to four files: a JSON file

with the settings, a pickled pyTorch state dict file, and
numpy files for the mean and variance of the inputs
(used for input scaling).

74 Chapter 13. madminer.ml package

MadMiner Documentation, Release 0.8.2

evaluate
initialize_input_transform
train

calculate_fisher_information(x, theta=None, weights=None, n_events=1, sum_events=True)
Calculates the expected Fisher information matrix based on the kinematic information in a given number
of events.

Parameters

x [str or ndarray] Sample of observations, or path to numpy file with observations. Note that
this sample has to be sampled from the reference parameter where the score is estimated
with the SALLY / SALLINO estimator.

theta: None or ndarray Numerator parameter point, or filename of a pickled numpy array.
Has no effect for ScoreEstimator.

weights [None or ndarray, optional] Weights for the observations. If None, all events are
taken to have equal weight. Default value: None.

n_events [float, optional] Expected number of events for which the kinematic Fisher infor-
mation should be calculated. Default value: 1.

sum_events [bool, optional] If True, the expected Fisher information summed over the events
x is calculated. If False, the per-event Fisher information for each event is returned. Default
value: True.

Returns

fisher_information [ndarray] Expected kinematic Fisher information matrix with shape
(n_events, n_parameters, n_parameters) if sum_events is False or (n_parameters,
n_parameters) if sum_events is True.

evaluate(*args, **kwargs)

evaluate_log_likelihood(*args, **kwargs)
Log likelihood estimation. Signature depends on the type of estimator. The first returned value is the log
likelihood with shape (n_thetas, n_x).

evaluate_log_likelihood_ratio(*args, **kwargs)
Log likelihood ratio estimation. Signature depends on the type of estimator. The first returned value is the
log likelihood ratio with shape (n_thetas, n_x) or (n_x).

evaluate_score(*args, **kwargs)
Score estimation. Signature depends on the type of estimator. The only returned value is the score with
shape (n_x).

initialize_input_transform(x, transform=True, overwrite=True)

load(filename)
Loads a trained model from files.

Parameters

filename [str] Path to the files. ‘_settings.json’ and ‘_state_dict.pl’ will be added.

Returns

None

13.2. madminer.ml.base module 75

MadMiner Documentation, Release 0.8.2

save(filename, save_model=False)
Saves the trained model to four files: a JSON file with the settings, a pickled pyTorch state dict file, and
numpy files for the mean and variance of the inputs (used for input scaling).

Parameters

filename [str] Path to the files. ‘_settings.json’ and ‘_state_dict.pl’ will be added.

save_model [bool, optional] If True, the whole model is saved in addition to the state dict.
This is not necessary for loading it again with Estimator.load(), but can be useful for de-
bugging, for instance to plot the computational graph.

Returns

None

train(*args, **kwargs)

exception madminer.ml.base.TheresAGoodReasonThisDoesntWork
Bases: Exception

13.3 madminer.ml.double_parameterized_ratio module

class madminer.ml.double_parameterized_ratio.DoubleParameterizedRatioEstimator(features=None,
n_hidden=(100,),
activa-
tion='tanh',
dropout_prob=0.0)

Bases: madminer.ml.base.ConditionalEstimator

A neural estimator of the likelihood ratio as a function of the observation x, the numerator hypothesis theta0, and
the denominator hypothesis theta1.

Parameters

features [list of int or None, optional] Indices of observables (features) that are used as input to
the neural networks. If None, all observables are used. Default value: None.

n_hidden [tuple of int, optional] Units in each hidden layer in the neural networks. If method
is ‘nde’ or ‘scandal’, this refers to the setup of each individual MADE layer. Default value:
(100,).

activation [{‘tanh’, ‘sigmoid’, ‘relu’}, optional] Activation function. Default value: ‘tanh’.

Methods

calculate_fisher_information(*args,
**kwargs)

Calculates the expected Fisher information matrix
based on the kinematic information in a given num-
ber of events.

evaluate_log_likelihood(*args, **kwargs) Log likelihood estimation.
evaluate_log_likelihood_ratio(x, theta0,
theta1)

Evaluates the log likelihood ratio as a function of the
observation x, the numerator hypothesis theta0, and
the denominator hypothesis theta1.

evaluate_score(*args, **kwargs) Score estimation.
load(filename) Loads a trained model from files.

continues on next page

76 Chapter 13. madminer.ml package

MadMiner Documentation, Release 0.8.2

Table 3 – continued from previous page
save(filename[, save_model]) Saves the trained model to four files: a JSON file

with the settings, a pickled pyTorch state dict file, and
numpy files for the mean and variance of the inputs
(used for input scaling).

train(method, x, y, theta0, theta1[, r_xz, . . .]) Trains the network.

evaluate
initialize_input_transform
initialize_parameter_transform

calculate_fisher_information(*args, **kwargs)
Calculates the expected Fisher information matrix based on the kinematic information in a given number
of events.

Parameters

x [str or ndarray] Sample of observations, or path to numpy file with observations. Note that
this sample has to be sampled from the reference parameter where the score is estimated
with the SALLY / SALLINO estimator.

theta: None or ndarray Numerator parameter point, or filename of a pickled numpy array.
Has no effect for ScoreEstimator.

weights [None or ndarray, optional] Weights for the observations. If None, all events are
taken to have equal weight. Default value: None.

n_events [float, optional] Expected number of events for which the kinematic Fisher infor-
mation should be calculated. Default value: 1.

sum_events [bool, optional] If True, the expected Fisher information summed over the events
x is calculated. If False, the per-event Fisher information for each event is returned. Default
value: True.

Returns

fisher_information [ndarray] Expected kinematic Fisher information matrix with shape
(n_events, n_parameters, n_parameters) if sum_events is False or (n_parameters,
n_parameters) if sum_events is True.

evaluate(*args, **kwargs)

evaluate_log_likelihood(*args, **kwargs)
Log likelihood estimation. Signature depends on the type of estimator. The first returned value is the log
likelihood with shape (n_thetas, n_x).

evaluate_log_likelihood_ratio(x, theta0, theta1, test_all_combinations=True, evaluate_score=False)
Evaluates the log likelihood ratio as a function of the observation x, the numerator hypothesis theta0, and
the denominator hypothesis theta1.

Parameters

x [str or ndarray] Observations or filename of a pickled numpy array.

theta0 [ndarray or str] Numerator parameter points or filename of a pickled numpy array.

theta1 [ndarray or str] Denominator parameter points or filename of a pickled numpy array.

13.3. madminer.ml.double_parameterized_ratio module 77

MadMiner Documentation, Release 0.8.2

test_all_combinations [bool, optional] If False, the number of samples in the observable
and theta files has to match, and the likelihood ratio is evaluated only for the combinations
r(x_i | theta0_i, theta1_i). If True, r(x_i | theta0_j, theta1_j) for all pairwise combinations
i, j are evaluated. Default value: True.

evaluate_score [bool, optional] Sets whether in addition to the likelihood ratio the score is
evaluated. Default value: False.

Returns

log_likelihood_ratio [ndarray] The estimated log likelihood ratio. If test_all_combinations
is True, the result has shape (n_thetas, n_x). Otherwise, it has shape (n_samples,).

score0 [ndarray or None] None if evaluate_score is False. Otherwise the derived estimated
score at theta0. If test_all_combinations is True, the result has shape (n_thetas, n_x,
n_parameters). Otherwise, it has shape (n_samples, n_parameters).

score1 [ndarray or None] None if evaluate_score is False. Otherwise the derived estimated
score at theta1. If test_all_combinations is True, the result has shape (n_thetas, n_x,
n_parameters). Otherwise, it has shape (n_samples, n_parameters).

evaluate_score(*args, **kwargs)
Score estimation. Signature depends on the type of estimator. The only returned value is the score with
shape (n_x).

train(method, x, y, theta0, theta1, r_xz=None, t_xz0=None, t_xz1=None, x_val=None, y_val=None,
theta0_val=None, theta1_val=None, r_xz_val=None, t_xz0_val=None, t_xz1_val=None, alpha=1.0,
optimizer='amsgrad', n_epochs=50, batch_size=128, initial_lr=0.001, final_lr=0.0001,
nesterov_momentum=None, validation_split=0.25, early_stopping=True, scale_inputs=True,
shuffle_labels=False, limit_samplesize=None, memmap=False, verbose='some',
scale_parameters=True, n_workers=8, clip_gradient=None, early_stopping_patience=None)

Trains the network.

Parameters

method [str] The inference method used for training. Allowed values are ‘alice’, ‘alices’,
‘carl’, ‘cascal’, ‘rascal’, and ‘rolr’.

x [ndarray or str] Observations, or filename of a pickled numpy array.

y [ndarray or str] Class labels (0 = numerator, 1 = denominator), or filename of a pickled
numpy array.

theta0 [ndarray or str] Numerator parameter point, or filename of a pickled numpy array.

theta1 [ndarray or str] Denominator parameter point, or filename of a pickled numpy array.

r_xz [ndarray or str or None, optional] Joint likelihood ratio, or filename of a pickled numpy
array. Default value: None.

t_xz0 [ndarray or str or None, optional] Joint scores at theta0, or filename of a pickled numpy
array. Default value: None.

t_xz1 [ndarray or str or None, optional] Joint scores at theta1, or filename of a pickled numpy
array. Default value: None.

x_val [ndarray or str or None, optional] Validation observations, or filename of a pickled
numpy array. If None and validation_split > 0, validation data will be randomly selected
from the training data. Default value: None.

y_val [ndarray or str or None, optional] Validation labels (0 = numerator, 1 = denominator),
or filename of a pickled numpy array. If None and validation_split > 0, validation data will
be randomly selected from the training data. Default value: None.

78 Chapter 13. madminer.ml package

MadMiner Documentation, Release 0.8.2

theta0_val [ndarray or str or None, optional] Validation numerator parameter points, or file-
name of a pickled numpy array. If None and validation_split > 0, validation data will be
randomly selected from the training data. Default value: None.

theta1_val [ndarray or str or None, optional] Validation denominator parameter points, or
filename of a pickled numpy array. If None and validation_split > 0, validation data will
be randomly selected from the training data. Default value: None.

r_xz_val [ndarray or str or None, optional] Validation joint likelihood ratio, or filename of
a pickled numpy array. If None and validation_split > 0, validation data will be randomly
selected from the training data. Default value: None.

t_xz0_val [ndarray or str or None, optional] Validation joint scores at theta0, or filename of
a pickled numpy array. If None and validation_split > 0, validation data will be randomly
selected from the training data. Default value: None.

t_xz1_val [ndarray or str or None, optional] Validation joint scores at theta1, or filename of
a pickled numpy array. If None and validation_split > 0, validation data will be randomly
selected from the training data. Default value: None.

alpha [float, optional] Hyperparameter weighting the score error in the loss function of the
‘alices’, ‘rascal’, and ‘cascal’ methods. Default value: 1.

optimizer [{“adam”, “amsgrad”, “sgd”}, optional] Optimization algorithm. Default value:
“amsgrad”.

n_epochs [int, optional] Number of epochs. Default value: 50.

batch_size [int, optional] Batch size. Default value: 128.

initial_lr [float, optional] Learning rate during the first epoch, after which it exponentially
decays to final_lr. Default value: 0.001.

final_lr [float, optional] Learning rate during the last epoch. Default value: 0.0001.

nesterov_momentum [float or None, optional] If trainer is “sgd”, sets the Nesterov momen-
tum. Default value: None.

validation_split [float or None, optional] Fraction of samples used for validation and early
stopping (if early_stopping is True). If None, the entire sample is used for training and
early stopping is deactivated. Default value: 0.25.

early_stopping [bool, optional] Activates early stopping based on the validation loss (only
if validation_split is not None). Default value: True.

scale_inputs [bool, optional] Scale the observables to zero mean and unit variance. Default
value: True.

shuffle_labels [bool, optional] If True, the labels (y, r_xz, t_xz) are shuffled, while the ob-
servations (x) remain in their normal order. This serves as a closure test, in particular as
cross-check against overfitting: an estimator trained with shuffle_labels=True should pre-
dict to likelihood ratios around 1 and scores around 0.

limit_samplesize [int or None, optional] If not None, only this number of samples (events)
is used to train the estimator. Default value: None.

memmap [bool, optional.] If True, training files larger than 1 GB will not be loaded into
memory at once. Default value: False.

verbose [{“all”, “many”, “some”, “few”, “none}, optional] Determines verbosity of training.
Default value: “some”.

Returns

13.3. madminer.ml.double_parameterized_ratio module 79

MadMiner Documentation, Release 0.8.2

result: ndarray Training and validation losses from DoubleParameterizedRatioTrainer.train

13.4 madminer.ml.ensemble module

class madminer.ml.ensemble.Ensemble(estimators=None)
Bases: object

Ensemble methods for likelihood, likelihood ratio, and score estimation.

Generally, Ensemble instances can be used very similarly to Estimator instances:

• The initialization of Ensemble takes a list of (trained or untrained) Estimator instances.

• The methods Ensemble.train_one() and Ensemble.train_all() train the estimators (this can also be done
outside of Ensemble).

• Ensemble.calculate_expectation() can be used to calculate the expectation of the estimation likelihood ratio
or the expected estimated score over a validation sample. Ideally (and assuming the correct sampling), these
expectation values should be close to zero. Deviations from zero therefore point out that the estimator is
probably inaccurate.

• Ensemble.evaluate_log_likelihood(), Ensemble.evaluate_log_likelihood_ratio(), Ensem-
ble.evaluate_score(), and Ensemble.calculate_fisher_information() can then be used to calculate
ensemble predictions.

• Ensemble.save() and Ensemble.load() can store all estimators in one folder.

The individual estimators in the ensemble can be trained with different methods, but they have to be of the same
type: either all estimators are ParameterizedRatioEstimator instances, or all estimators are DoubleParameterize-
dRatioEstimator instances, or all estimators are ScoreEstimator instances, or all estimators are LikelihoodEsti-
mator instances..

Parameters

estimators [None or list of Estimator, optional] If int, sets the number of estimators that will be
created as new MLForge instances. If list, sets the estimators directly, either from MLForge
instances or filenames (that are then loaded with MLForge.load()). If None, the ensemble
is initialized without estimators. Note that the estimators have to be consistent: either all of
them are trained with a local score method (‘sally’ or ‘sallino’); or all of them are trained
with a single-parameterized method (‘carl’, ‘rolr’, ‘rascal’, ‘scandal’, ‘alice’, or ‘alices’); or
all of them are trained with a doubly parameterized method (‘carl2’, ‘rolr2’, ‘rascal2’, ‘al-
ice2’, or ‘alices2’). Mixing estimators of different types within one of these three categories
is supported, but mixing estimators from different categories is not and will raise a Runtime-
Exception. Default value: None.

Attributes

estimators [list of Estimator] The estimators in the form of MLForge instances.

80 Chapter 13. madminer.ml package

MadMiner Documentation, Release 0.8.2

Methods

add_estimator(estimator) Adds an estimator to the ensemble.
calculate_fisher_information(x[, theta, . . .]) Calculates expected Fisher information matrices for

an ensemble of ScoreEstimator instances.
evaluate_log_likelihood([estimator_weights,
. . .])

Estimates the log likelihood from each estima-
tor and returns the ensemble mean (and, if cal-
culate_covariance is True, the covariance between
them).

evaluate_log_likelihood_ratio([. . .]) Estimates the log likelihood ratio from each esti-
mator and returns the ensemble mean (and, if cal-
culate_covariance is True, the covariance between
them).

evaluate_score([estimator_weights, . . .]) Estimates the score from each estimator and returns
the ensemble mean (and, if calculate_covariance is
True, the covariance between them).

load(folder) Loads the estimator ensemble from a folder.
save(folder[, save_model]) Saves the estimator ensemble to a folder.
train_all(**kwargs) Trains all estimators.
train_one(i, **kwargs) Trains an individual estimator.

add_estimator(estimator)
Adds an estimator to the ensemble.

Parameters

estimator [Estimator] The estimator.

Returns

None

calculate_fisher_information(x, theta=None, obs_weights=None, estimator_weights=None,
n_events=1, mode='score', calculate_covariance=True,
sum_events=True, epsilon_shift=0.001)

Calculates expected Fisher information matrices for an ensemble of ScoreEstimator instances.

There are two ways of calculating the ensemble average. In the default “score” mode, the ensemble average
for the score is calculated for each event, and the Fisher information is calculated based on these mean
scores. In the “information” mode, the Fisher information is calculated for each estimator separately and
the ensemble mean is calculated only for the final Fisher information matrix. The “score” mode is generally
assumed to be more precise and is the default.

In the “score” mode, the covariance matrix of the final result is calculated in the following way:

• For each event x and each estimator a, the “shifted” predicted score is calculated as t_a’(x) = t(x) +
1/sqrt(n) * (t_a(x) - t(x)). Here t(x) is the mean score (averaged over the ensemble) for this event,
t_a(x) is the prediction of estimator a for this event, and n is the number of estimators. The ensemble
variance of these shifted score predictions is equal to the uncertainty on the mean of the ensemble of
original predictions.

• For each estimator a, the shifted Fisher information matrix I_a’ is calculated from the shifted predicted
scores.

• The ensemble covariance between all Fisher information matrices I_a’ is calculated and taken as the
measure of uncertainty on the Fisher information calculated from the mean scores.

13.4. madminer.ml.ensemble module 81

MadMiner Documentation, Release 0.8.2

In the “information” mode, the user has the option to treat all estimators equally (‘committee method’)
or to give those with expected score close to zero (as calculated by calculate_expectation()) a higher
weight. In this case, the ensemble mean I is calculated as I = sum_i w_i I_i with weights w_i = exp(-
vote_expectation_weight |E[t_i]|) / sum_j exp(-vote_expectation_weight |E[t_k]|). Here I_i are the indi-
vidual estimators and E[t_i] is the expectation value calculated by calculate_expectation().

Parameters

x [str or ndarray] Sample of observations, or path to numpy file with observations, as saved by
the madminer.sampling.SampleAugmenter functions. Note that this sample has to be sam-
pled from the reference parameter where the score is estimated with the SALLY / SALLINO
estimator!

obs_weights [None or ndarray, optional] Weights for the observations. If None, all events
are taken to have equal weight. Default value: None.

estimator_weights [ndarray or None, optional] Weights for each estimator in the ensemble.
If None, all estimators have an equal vote. Default value: None.

n_events [float, optional] Expected number of events for which the kinematic Fisher infor-
mation should be calculated. Default value: 1.

mode [{“score”, “information”}, optional] If mode is “information”, the Fisher information
for each estimator is calculated individually and only then are the sample mean and covari-
ance calculated. If mode is “score”, the sample mean is calculated for the score for each
event. Default value: “score”.

calculate_covariance [bool, optional] If True, the covariance between the different estima-
tors is calculated. Default value: True.

sum_events [bool, optional] If True or mode is “information”, the expected Fisher informa-
tion summed over the events x is calculated. If False and mode is “score”, the per-event
Fisher information for each event is returned. Default value: True.

epsilon_shift [float, optional] Small numerical factor in the error propagation. Default value:
0.001.

Returns

mean_prediction [ndarray] Expected kinematic Fisher information matrix with shape
(n_events, n_parameters, n_parameters) if sum_events is False and mode is “score”, or
(n_parameters, n_parameters) in any other case.

covariance [ndarray or None] The covariance of the estimated Fisher information matrix.
This object has four indices, cov_(ij)(i’j’), ordered as i j i’ j’. It has shape (n_parameters,
n_parameters, n_parameters, n_parameters).

evaluate_log_likelihood(estimator_weights=None, calculate_covariance=False, **kwargs)
Estimates the log likelihood from each estimator and returns the ensemble mean (and, if calcu-
late_covariance is True, the covariance between them).

Parameters

estimator_weights [ndarray or None, optional] Weights for each estimator in the ensemble.
If None, all estimators have an equal vote. Default value: None.

calculate_covariance [bool, optional] If True, the covariance between the different estima-
tors is calculated. Default value: False.

kwargs Arguments for the evaluation. See the documentation of the relevant Estimator class.

Returns

82 Chapter 13. madminer.ml package

MadMiner Documentation, Release 0.8.2

log_likelihood [ndarray] Mean prediction for the log likelihood.

covariance [ndarray or None] If calculate_covariance is True, the covariance matrix between
the estimators. Otherwise None.

evaluate_log_likelihood_ratio(estimator_weights=None, calculate_covariance=False, **kwargs)
Estimates the log likelihood ratio from each estimator and returns the ensemble mean (and, if calcu-
late_covariance is True, the covariance between them).

Parameters

estimator_weights [ndarray or None, optional] Weights for each estimator in the ensemble.
If None, all estimators have an equal vote. Default value: None.

calculate_covariance [bool, optional] If True, the covariance between the different estima-
tors is calculated. Default value: False.

kwargs Arguments for the evaluation. See the documentation of the relevant Estimator class.

Returns

log_likelihood_ratio [ndarray] Mean prediction for the log likelihood ratio.

covariance [ndarray or None] If calculate_covariance is True, the covariance matrix between
the estimators. Otherwise None.

evaluate_score(estimator_weights=None, calculate_covariance=False, **kwargs)
Estimates the score from each estimator and returns the ensemble mean (and, if calculate_covariance is
True, the covariance between them).

Parameters

estimator_weights [ndarray or None, optional] Weights for each estimator in the ensemble.
If None, all estimators have an equal vote. Default value: None.

calculate_covariance [bool, optional] If True, the covariance between the different estima-
tors is calculated. Default value: False.

kwargs Arguments for the evaluation. See the documentation of the relevant Estimator class.

Returns

log_likelihood_ratio [ndarray] Mean prediction for the log likelihood ratio.

covariance [ndarray or None] If calculate_covariance is True, the covariance matrix between
the estimators. Otherwise None.

load(folder)
Loads the estimator ensemble from a folder.

Parameters

folder [str] Path to the folder.

Returns

None

save(folder, save_model=False)
Saves the estimator ensemble to a folder.

Parameters

folder [str] Path to the folder.

13.4. madminer.ml.ensemble module 83

MadMiner Documentation, Release 0.8.2

save_model [bool, optional] If True, the whole model is saved in addition to the state dict.
This is not necessary for loading it again with Ensemble.load(), but can be useful for de-
bugging, for instance to plot the computational graph.

Returns

None

train_all(**kwargs)
Trains all estimators. See Estimator.train().

Parameters

kwargs [dict] Parameters for Estimator.train(). If a value in this dict is a list, it has to have
length n_estimators and contain one value of this parameter for each of the estimators.
Otherwise the value is used as parameter for the training of all the estimators.

Returns

result_list: list of ndarray List of training and validation losses from estimator training

train_one(i, **kwargs)
Trains an individual estimator. See Estimator.train().

Parameters

i [int] The index 0 <= i < n_estimators of the estimator to be trained.

kwargs [dict] Parameters for Estimator.train().

Returns

result: ndarray Training and validation losses from estimator training

13.5 madminer.ml.likelihood module

class madminer.ml.likelihood.LikelihoodEstimator(features=None, n_components=1, n_mades=5,
n_hidden=(100,), activation='tanh',
batch_norm=None)

Bases: madminer.ml.base.ConditionalEstimator

A neural estimator of the density or likelihood evaluated at a reference hypothesis as a function of the
observation x.

Parameters

features [list of int or None, optional] Indices of observables (features) that are used as input to
the neural networks. If None, all observables are used. Default value: None.

n_components [int, optional] The number of Gaussian base components in a MADE MoG. If
1, a plain MADE is used. Default value: 1.

n_mades [int, optional] The number of MADE layers. Default value: 3.

n_hidden [tuple of int, optional] Units in each hidden layer in the neural networks. If method
is ‘nde’ or ‘scandal’, this refers to the setup of each individual MADE layer. Default value:
(100,).

activation [{‘tanh’, ‘sigmoid’, ‘relu’}, optional] Activation function. Default value: ‘tanh’.

84 Chapter 13. madminer.ml package

MadMiner Documentation, Release 0.8.2

batch_norm [None or float, optional] If not None, batch normalization is used, where this value
sets the alpha parameter in the calculation of the running average of the mean and variance.
Default value: None.

Methods

calculate_fisher_information(*args,
**kwargs)

Calculates the expected Fisher information matrix
based on the kinematic information in a given num-
ber of events.

evaluate_log_likelihood(x, theta[, . . .]) Evaluates the log likelihood as a function of the ob-
servation x and the parameter point theta.

evaluate_log_likelihood_ratio(x, theta0, . . .) Evaluates the log likelihood ratio as a function of the
observation x, the numerator parameter point theta0,
and the denominator parameter point theta1.

evaluate_score(*args, **kwargs) Score estimation.
load(filename) Loads a trained model from files.
save(filename[, save_model]) Saves the trained model to four files: a JSON file

with the settings, a pickled pyTorch state dict file, and
numpy files for the mean and variance of the inputs
(used for input scaling).

train(method, x, theta[, t_xz, x_val, . . .]) Trains the network.

evaluate
initialize_input_transform
initialize_parameter_transform

calculate_fisher_information(*args, **kwargs)
Calculates the expected Fisher information matrix based on the kinematic information in a given number
of events.

Parameters

x [str or ndarray] Sample of observations, or path to numpy file with observations. Note that
this sample has to be sampled from the reference parameter where the score is estimated
with the SALLY / SALLINO estimator.

theta: None or ndarray Numerator parameter point, or filename of a pickled numpy array.
Has no effect for ScoreEstimator.

weights [None or ndarray, optional] Weights for the observations. If None, all events are
taken to have equal weight. Default value: None.

n_events [float, optional] Expected number of events for which the kinematic Fisher infor-
mation should be calculated. Default value: 1.

sum_events [bool, optional] If True, the expected Fisher information summed over the events
x is calculated. If False, the per-event Fisher information for each event is returned. Default
value: True.

Returns

fisher_information [ndarray] Expected kinematic Fisher information matrix with shape
(n_events, n_parameters, n_parameters) if sum_events is False or (n_parameters,
n_parameters) if sum_events is True.

13.5. madminer.ml.likelihood module 85

MadMiner Documentation, Release 0.8.2

evaluate(*args, **kwargs)

evaluate_log_likelihood(x, theta, test_all_combinations=True, evaluate_score=False)
Evaluates the log likelihood as a function of the observation x and the parameter point theta.

Parameters

x [ndarray or str] Sample of observations, or path to numpy file with observations.

theta [ndarray or str] Parameter points, or path to numpy file with parameter points.

test_all_combinations [bool, optional] If method is not ‘sally’ and not ‘sallino’: If False, the
number of samples in the observable and theta files has to match, and the likelihood ratio
is evaluated only for the combinations r(x_i | theta0_i, theta1_i). If True, r(x_i | theta0_j,
theta1_j) for all pairwise combinations i, j are evaluated. Default value: True.

evaluate_score [bool, optional] If method is not ‘sally’ and not ‘sallino’, this sets whether in
addition to the likelihood ratio the score is evaluated. Default value: False.

Returns

log_likelihood [ndarray] The estimated log likelihood. If test_all_combinations is True, the
result has shape (n_thetas, n_x). Otherwise, it has shape (n_samples,).

score [ndarray or None] None if evaluate_score is False. Otherwise the derived estimated
score at theta. If test_all_combinations is True, the result has shape (n_thetas, n_x,
n_parameters). Otherwise, it has shape (n_samples, n_parameters).

evaluate_log_likelihood_ratio(x, theta0, theta1, test_all_combinations, evaluate_score=False)
Evaluates the log likelihood ratio as a function of the observation x, the numerator parameter point theta0,
and the denominator parameter point theta1.

Parameters

x [ndarray or str] Sample of observations, or path to numpy file with observations.

theta0 [ndarray or str] Numerator parameters, or path to numpy file.

theta1 [ndarray or str] Denominator parameters, or path to numpy file.

test_all_combinations [bool, optional] If method is not ‘sally’ and not ‘sallino’: If False, the
number of samples in the observable and theta files has to match, and the likelihood ratio
is evaluated only for the combinations r(x_i | theta0_i, theta1_i). If True, r(x_i | theta0_j,
theta1_j) for all pairwise combinations i, j are evaluated. Default value: True.

evaluate_score [bool, optional] If method is not ‘sally’ and not ‘sallino’, this sets whether in
addition to the likelihood ratio the score is evaluated. Default value: False.

Returns

log_likelihood [ndarray] The estimated log likelihood. If test_all_combinations is True, the
result has shape (n_thetas, n_x). Otherwise, it has shape (n_samples,).

score [ndarray or None] None if evaluate_score is False. Otherwise the derived estimated
score at theta. If test_all_combinations is True, the result has shape (n_thetas, n_x,
n_parameters). Otherwise, it has shape (n_samples, n_parameters).

evaluate_score(*args, **kwargs)
Score estimation. Signature depends on the type of estimator. The only returned value is the score with
shape (n_x).

86 Chapter 13. madminer.ml package

MadMiner Documentation, Release 0.8.2

train(method, x, theta, t_xz=None, x_val=None, theta_val=None, t_xz_val=None, alpha=1.0,
optimizer='amsgrad', n_epochs=50, batch_size=128, initial_lr=0.001, final_lr=0.0001,
nesterov_momentum=None, validation_split=0.25, early_stopping=True, scale_inputs=True,
shuffle_labels=False, limit_samplesize=None, memmap=False, verbose='some',
scale_parameters=True, n_workers=8, clip_gradient=None, early_stopping_patience=None)

Trains the network.

Parameters

method [str] The inference method used for training. Allowed values are ‘nde’ and ‘scandal’.

x [ndarray or str] Observations, or filename of a pickled numpy array.

theta [ndarray or str] Numerator parameter point, or filename of a pickled numpy array.

t_xz [ndarray or str or None, optional] Joint scores at theta, or filename of a pickled numpy
array. Default value: None.

x_val [ndarray or str or None, optional] Validation observations, or filename of a pickled
numpy array. If None and validation_split > 0, validation data will be randomly selected
from the training data. Default value: None.

theta_val [ndarray or str or None, optional] Validation numerator parameter points, or file-
name of a pickled numpy array. If None and validation_split > 0, validation data will be
randomly selected from the training data. Default value: None.

t_xz_val [ndarray or str or None, optional] Validation joint scores at theta, or filename of a
pickled numpy array. If None and validation_split > 0, validation data will be randomly
selected from the training data. Default value: None.

alpha [float, optional] Hyperparameter weighting the score error in the loss function of the
‘alices’, ‘rascal’, and ‘cascal’ methods. Default value: 1.

optimizer [{“adam”, “amsgrad”, “sgd”}, optional] Optimization algorithm. Default value:
“amsgrad”.

n_epochs [int, optional] Number of epochs. Default value: 50.

batch_size [int, optional] Batch size. Default value: 128.

initial_lr [float, optional] Learning rate during the first epoch, after which it exponentially
decays to final_lr. Default value: 0.001.

final_lr [float, optional] Learning rate during the last epoch. Default value: 0.0001.

nesterov_momentum [float or None, optional] If trainer is “sgd”, sets the Nesterov momen-
tum. Default value: None.

validation_split [float or None, optional] Fraction of samples used for validation and early
stopping (if early_stopping is True). If None, the entire sample is used for training and
early stopping is deactivated. Default value: 0.25.

early_stopping [bool, optional] Activates early stopping based on the validation loss (only
if validation_split is not None). Default value: True.

scale_inputs [bool, optional] Scale the observables to zero mean and unit variance. Default
value: True.

shuffle_labels [bool, optional] If True, the labels (y, r_xz, t_xz) are shuffled, while the ob-
servations (x) remain in their normal order. This serves as a closure test, in particular as
cross-check against overfitting: an estimator trained with shuffle_labels=True should pre-
dict to likelihood ratios around 1 and scores around 0.

13.5. madminer.ml.likelihood module 87

MadMiner Documentation, Release 0.8.2

limit_samplesize [int or None, optional] If not None, only this number of samples (events)
is used to train the estimator. Default value: None.

memmap [bool, optional.] If True, training files larger than 1 GB will not be loaded into
memory at once. Default value: False.

verbose [{“all”, “many”, “some”, “few”, “none}, optional] Determines verbosity of training.
Default value: “some”.

scale_parameters [bool, optional] Whether parameters are rescaled to mean zero and unit
variance before going into the neural network. Default value: True.

Returns

result: ndarray Training and validation losses from FlowTrainer.train

13.6 madminer.ml.lookup module

madminer.ml.lookup.load_estimator(filename)

13.7 madminer.ml.morphing_aware module

class madminer.ml.morphing_aware.MorphingAwareRatioEstimator(morphing_setup_filename=None,
optimize_morphing_basis=False,
features=None, n_hidden=(100,),
activation='tanh',
dropout_prob=0.0)

Bases: madminer.ml.parameterized_ratio.ParameterizedRatioEstimator

Methods

calculate_fisher_information(x, theta[, . . .]) Calculates the expected Fisher information matrix
based on the kinematic information in a given num-
ber of events.

evaluate_log_likelihood(*args, **kwargs) Log likelihood estimation.
evaluate_log_likelihood_ratio(x, theta[,
. . .])

Evaluates the log likelihood ratio for given observa-
tions x between the given parameter point theta and
the reference hypothesis.

evaluate_log_likelihood_ratio_torch(x,
theta)

Evaluates the log likelihood ratio for given observa-
tions x between the given parameter point theta and
the reference hypothesis.

evaluate_score(x, theta[, nuisance_mode]) Evaluates the scores for given observations x between
at a given parameter point theta.

load(filename) Loads a trained model from files.
save(filename[, save_model]) Saves the trained model to four files: a JSON file

with the settings, a pickled pyTorch state dict file, and
numpy files for the mean and variance of the inputs
(used for input scaling).

train(*args, **kwargs) Trains the network.

88 Chapter 13. madminer.ml package

MadMiner Documentation, Release 0.8.2

evaluate
initialize_input_transform
initialize_parameter_transform

train(*args, **kwargs)
Trains the network.

Parameters

method [str] The inference method used for training. Allowed values are ‘alice’, ‘alices’,
‘carl’, ‘cascal’, ‘rascal’, and ‘rolr’.

x [ndarray or str] Observations, or filename of a pickled numpy array.

y [ndarray or str] Class labels (0 = numerator, 1 = denominator), or filename of a pickled
numpy array.

theta [ndarray or str] Numerator parameter point, or filename of a pickled numpy array.

r_xz [ndarray or str or None, optional] Joint likelihood ratio, or filename of a pickled numpy
array. Default value: None.

t_xz [ndarray or str or None, optional] Joint scores at theta, or filename of a pickled numpy
array. Default value: None.

x_val [ndarray or str or None, optional] Validation observations, or filename of a pickled
numpy array. If None and validation_split > 0, validation data will be randomly selected
from the training data. Default value: None.

y_val [ndarray or str or None, optional] Validation labels (0 = numerator, 1 = denominator),
or filename of a pickled numpy array. If None and validation_split > 0, validation data will
be randomly selected from the training data. Default value: None.

theta_val [ndarray or str or None, optional] Validation numerator parameter points, or file-
name of a pickled numpy array. If None and validation_split > 0, validation data will be
randomly selected from the training data. Default value: None.

r_xz_val [ndarray or str or None, optional] Validation joint likelihood ratio, or filename of
a pickled numpy array. If None and validation_split > 0, validation data will be randomly
selected from the training data. Default value: None.

t_xz_val [ndarray or str or None, optional] Validation joint scores at theta, or filename of a
pickled numpy array. If None and validation_split > 0, validation data will be randomly
selected from the training data. Default value: None.

alpha [float, optional] Hyperparameter weighting the score error in the loss function of the
‘alices’, ‘rascal’, and ‘cascal’ methods. Default value: 1.

optimizer [{“adam”, “amsgrad”, “sgd”}, optional] Optimization algorithm. Default value:
“amsgrad”.

n_epochs [int, optional] Number of epochs. Default value: 50.

batch_size [int, optional] Batch size. Default value: 128.

initial_lr [float, optional] Learning rate during the first epoch, after which it exponentially
decays to final_lr. Default value: 0.001.

final_lr [float, optional] Learning rate during the last epoch. Default value: 0.0001.

nesterov_momentum [float or None, optional] If trainer is “sgd”, sets the Nesterov momen-
tum. Default value: None.

13.7. madminer.ml.morphing_aware module 89

MadMiner Documentation, Release 0.8.2

validation_split [float or None, optional] Fraction of samples used for validation and early
stopping (if early_stopping is True). If None, the entire sample is used for training and
early stopping is deactivated. Default value: 0.25.

early_stopping [bool, optional] Activates early stopping based on the validation loss (only
if validation_split is not None). Default value: True.

scale_inputs [bool, optional] Scale the observables to zero mean and unit variance. Default
value: True.

shuffle_labels [bool, optional] If True, the labels (y, r_xz, t_xz) are shuffled, while the ob-
servations (x) remain in their normal order. This serves as a closure test, in particular as
cross-check against overfitting: an estimator trained with shuffle_labels=True should pre-
dict to likelihood ratios around 1 and scores around 0.

limit_samplesize [int or None, optional] If not None, only this number of samples (events)
is used to train the estimator. Default value: None.

memmap [bool, optional.] If True, training files larger than 1 GB will not be loaded into
memory at once. Default value: False.

verbose [{“all”, “many”, “some”, “few”, “none}, optional] Determines verbosity of training.
Default value: “some”.

scale_parameters [bool, optional] Whether parameters are rescaled to mean zero and unit
variance before going into the neural network. Default value: True.

Returns

result: ndarray Training and validation losses from SingleParameterizedRatioTrainer.train
or DoubleParameterizedRatioTrainer.train for example

class madminer.ml.morphing_aware.QuadraticMorphingAwareRatioEstimator(features=None,
n_hidden=(100,),
activation='tanh',
dropout_prob=0.0)

Bases: madminer.ml.parameterized_ratio.ParameterizedRatioEstimator

Specific morphing-aware likelihood ratio estimator for a single parameter and theta1 = 0.

Uses the quadratic parameterization of 2007.10356: r_hat(x, theta) = (1 + theta A(x))^2 + (theta B(x))^2.

Methods

calculate_fisher_information(x, theta[, . . .]) Calculates the expected Fisher information matrix
based on the kinematic information in a given num-
ber of events.

evaluate_log_likelihood(*args, **kwargs) Log likelihood estimation.
evaluate_log_likelihood_ratio(x, theta[,
. . .])

Evaluates the log likelihood ratio for given observa-
tions x between the given parameter point theta and
the reference hypothesis.

evaluate_log_likelihood_ratio_torch(x,
theta)

Evaluates the log likelihood ratio for given observa-
tions x between the given parameter point theta and
the reference hypothesis.

evaluate_score(x, theta[, nuisance_mode]) Evaluates the scores for given observations x between
at a given parameter point theta.

load(filename) Loads a trained model from files.
continues on next page

90 Chapter 13. madminer.ml package

MadMiner Documentation, Release 0.8.2

Table 7 – continued from previous page
save(filename[, save_model]) Saves the trained model to four files: a JSON file

with the settings, a pickled pyTorch state dict file, and
numpy files for the mean and variance of the inputs
(used for input scaling).

train(*args, **kwargs) Trains the network.

evaluate
initialize_input_transform
initialize_parameter_transform

train(*args, **kwargs)
Trains the network.

Parameters

method [str] The inference method used for training. Allowed values are ‘alice’, ‘alices’,
‘carl’, ‘cascal’, ‘rascal’, and ‘rolr’.

x [ndarray or str] Observations, or filename of a pickled numpy array.

y [ndarray or str] Class labels (0 = numerator, 1 = denominator), or filename of a pickled
numpy array.

theta [ndarray or str] Numerator parameter point, or filename of a pickled numpy array.

r_xz [ndarray or str or None, optional] Joint likelihood ratio, or filename of a pickled numpy
array. Default value: None.

t_xz [ndarray or str or None, optional] Joint scores at theta, or filename of a pickled numpy
array. Default value: None.

x_val [ndarray or str or None, optional] Validation observations, or filename of a pickled
numpy array. If None and validation_split > 0, validation data will be randomly selected
from the training data. Default value: None.

y_val [ndarray or str or None, optional] Validation labels (0 = numerator, 1 = denominator),
or filename of a pickled numpy array. If None and validation_split > 0, validation data will
be randomly selected from the training data. Default value: None.

theta_val [ndarray or str or None, optional] Validation numerator parameter points, or file-
name of a pickled numpy array. If None and validation_split > 0, validation data will be
randomly selected from the training data. Default value: None.

r_xz_val [ndarray or str or None, optional] Validation joint likelihood ratio, or filename of
a pickled numpy array. If None and validation_split > 0, validation data will be randomly
selected from the training data. Default value: None.

t_xz_val [ndarray or str or None, optional] Validation joint scores at theta, or filename of a
pickled numpy array. If None and validation_split > 0, validation data will be randomly
selected from the training data. Default value: None.

alpha [float, optional] Hyperparameter weighting the score error in the loss function of the
‘alices’, ‘rascal’, and ‘cascal’ methods. Default value: 1.

optimizer [{“adam”, “amsgrad”, “sgd”}, optional] Optimization algorithm. Default value:
“amsgrad”.

n_epochs [int, optional] Number of epochs. Default value: 50.

batch_size [int, optional] Batch size. Default value: 128.

13.7. madminer.ml.morphing_aware module 91

MadMiner Documentation, Release 0.8.2

initial_lr [float, optional] Learning rate during the first epoch, after which it exponentially
decays to final_lr. Default value: 0.001.

final_lr [float, optional] Learning rate during the last epoch. Default value: 0.0001.

nesterov_momentum [float or None, optional] If trainer is “sgd”, sets the Nesterov momen-
tum. Default value: None.

validation_split [float or None, optional] Fraction of samples used for validation and early
stopping (if early_stopping is True). If None, the entire sample is used for training and
early stopping is deactivated. Default value: 0.25.

early_stopping [bool, optional] Activates early stopping based on the validation loss (only
if validation_split is not None). Default value: True.

scale_inputs [bool, optional] Scale the observables to zero mean and unit variance. Default
value: True.

shuffle_labels [bool, optional] If True, the labels (y, r_xz, t_xz) are shuffled, while the ob-
servations (x) remain in their normal order. This serves as a closure test, in particular as
cross-check against overfitting: an estimator trained with shuffle_labels=True should pre-
dict to likelihood ratios around 1 and scores around 0.

limit_samplesize [int or None, optional] If not None, only this number of samples (events)
is used to train the estimator. Default value: None.

memmap [bool, optional.] If True, training files larger than 1 GB will not be loaded into
memory at once. Default value: False.

verbose [{“all”, “many”, “some”, “few”, “none}, optional] Determines verbosity of training.
Default value: “some”.

scale_parameters [bool, optional] Whether parameters are rescaled to mean zero and unit
variance before going into the neural network. Default value: True.

Returns

result: ndarray Training and validation losses from SingleParameterizedRatioTrainer.train
or DoubleParameterizedRatioTrainer.train for example

13.8 madminer.ml.parameterized_ratio module

class madminer.ml.parameterized_ratio.ParameterizedRatioEstimator(features=None,
n_hidden=(100,),
activation='tanh',
dropout_prob=0.0)

Bases: madminer.ml.base.ConditionalEstimator

A neural estimator of the likelihood ratio as a function of the observation x as well as the numerator hypothesis
theta. The reference (denominator) hypothesis is kept fixed at some reference value and NOT modeled by the
network.

Parameters

features [list of int or None, optional] Indices of observables (features) that are used as input to
the neural networks. If None, all observables are used. Default value: None.

n_hidden [tuple of int, optional] Units in each hidden layer in the neural networks. If method
is ‘nde’ or ‘scandal’, this refers to the setup of each individual MADE layer. Default value:
(100,).

92 Chapter 13. madminer.ml package

MadMiner Documentation, Release 0.8.2

activation [{‘tanh’, ‘sigmoid’, ‘relu’}, optional] Activation function. Default value: ‘tanh’.

Methods

calculate_fisher_information(x, theta[, . . .]) Calculates the expected Fisher information matrix
based on the kinematic information in a given num-
ber of events.

evaluate_log_likelihood(*args, **kwargs) Log likelihood estimation.
evaluate_log_likelihood_ratio(x, theta[,
. . .])

Evaluates the log likelihood ratio for given observa-
tions x between the given parameter point theta and
the reference hypothesis.

evaluate_log_likelihood_ratio_torch (x,
theta)

Evaluates the log likelihood ratio for given observa-
tions x between the given parameter point theta and
the reference hypothesis.

evaluate_score(x, theta[, nuisance_mode]) Evaluates the scores for given observations x between
at a given parameter point theta.

load(filename) Loads a trained model from files.
save(filename[, save_model]) Saves the trained model to four files: a JSON file

with the settings, a pickled pyTorch state dict file, and
numpy files for the mean and variance of the inputs
(used for input scaling).

train(method, x, y, theta[, r_xz, t_xz, . . .]) Trains the network.

evaluate
initialize_input_transform
initialize_parameter_transform

calculate_fisher_information(x, theta, weights=None, n_events=1, sum_events=True)
Calculates the expected Fisher information matrix based on the kinematic information in a given number
of events.

Parameters

x [str or ndarray] Sample of observations, or path to numpy file with observations. Note that
this sample has to be sampled from the reference parameter where the score is estimated
with the SALLY / SALLINO estimator.

theta: None or ndarray Numerator parameter point, or filename of a pickled numpy array.
Has no effect for ScoreEstimator.

weights [None or ndarray, optional] Weights for the observations. If None, all events are
taken to have equal weight. Default value: None.

n_events [float, optional] Expected number of events for which the kinematic Fisher infor-
mation should be calculated. Default value: 1.

sum_events [bool, optional] If True, the expected Fisher information summed over the events
x is calculated. If False, the per-event Fisher information for each event is returned. Default
value: True.

Returns

fisher_information [ndarray] Expected kinematic Fisher information matrix with shape
(n_events, n_parameters, n_parameters) if sum_events is False or (n_parameters,
n_parameters) if sum_events is True.

13.8. madminer.ml.parameterized_ratio module 93

MadMiner Documentation, Release 0.8.2

evaluate(*args, **kwargs)

evaluate_log_likelihood(*args, **kwargs)
Log likelihood estimation. Signature depends on the type of estimator. The first returned value is the log
likelihood with shape (n_thetas, n_x).

evaluate_log_likelihood_ratio(x, theta, test_all_combinations=True, evaluate_score=False)
Evaluates the log likelihood ratio for given observations x between the given parameter point theta and the
reference hypothesis.

Parameters

x [str or ndarray] Observations or filename of a pickled numpy array.

theta [ndarray or str] Parameter points or filename of a pickled numpy array.

test_all_combinations [bool, optional] If False, the number of samples in the observable
and theta files has to match, and the likelihood ratio is evaluated only for the combinations
r(x_i | theta0_i, theta1_i). If True, r(x_i | theta0_j, theta1_j) for all pairwise combinations
i, j are evaluated. Default value: True.

evaluate_score [bool, optional] Sets whether in addition to the likelihood ratio the score is
evaluated. Default value: False.

Returns

log_likelihood_ratio [ndarray] The estimated log likelihood ratio. If test_all_combinations
is True, the result has shape (n_thetas, n_x). Otherwise, it has shape (n_samples,).

score [ndarray or None] None if evaluate_score is False. Otherwise the derived estimated
score at theta0. If test_all_combinations is True, the result has shape (n_thetas, n_x,
n_parameters). Otherwise, it has shape (n_samples, n_parameters).

evaluate_log_likelihood_ratio_torch(x, theta, test_all_combinations=True)
Evaluates the log likelihood ratio for given observations x between the given parameter point theta and the
reference hypothesis.

Parameters

x [torch.tensor] Observations.

theta [torch.tensor] Parameter points.

test_all_combinations [bool, optional] If False, the number of samples in the observable
and theta files has to match, and the likelihood ratio is evaluated only for the combinations
r(x_i | theta0_i, theta1_i). If True, r(x_i | theta0_j, theta1_j) for all pairwise combinations
i, j are evaluated. Default value: True.

Returns

log_likelihood_ratio [torch.tensor] The estimated log likelihood ratio. If
test_all_combinations is True, the result has shape (n_thetas, n_x). Otherwise, it
has shape (n_samples,).

evaluate_score(x, theta, nuisance_mode='keep')
Evaluates the scores for given observations x between at a given parameter point theta.

Parameters

x [str or ndarray] Observations or filename of a pickled numpy array.

theta [ndarray or str] Parameter points or filename of a pickled numpy array.

94 Chapter 13. madminer.ml package

MadMiner Documentation, Release 0.8.2

nuisance_mode [{“auto”, “keep”, “profile”, “project”}] Decides how nuisance parameters
are treated. If nuisance_mode is “keep”, the returned score is always (n+k)-dimensional.

Returns

score [ndarray or None] The estimated score at theta. If test_all_combinations is True,
the result has shape (n_thetas, n_x, n_parameters). Otherwise, it has shape (n_samples,
n_parameters).

train(method, x, y, theta, r_xz=None, t_xz=None, x_val=None, y_val=None, theta_val=None,
r_xz_val=None, t_xz_val=None, alpha=1.0, optimizer='amsgrad', n_epochs=50, batch_size=128,
initial_lr=0.001, final_lr=0.0001, nesterov_momentum=None, validation_split=0.25,
early_stopping=True, scale_inputs=True, shuffle_labels=False, limit_samplesize=None,
memmap=False, verbose='some', scale_parameters=True, n_workers=8, clip_gradient=None,
early_stopping_patience=None)

Trains the network.

Parameters

method [str] The inference method used for training. Allowed values are ‘alice’, ‘alices’,
‘carl’, ‘cascal’, ‘rascal’, and ‘rolr’.

x [ndarray or str] Observations, or filename of a pickled numpy array.

y [ndarray or str] Class labels (0 = numerator, 1 = denominator), or filename of a pickled
numpy array.

theta [ndarray or str] Numerator parameter point, or filename of a pickled numpy array.

r_xz [ndarray or str or None, optional] Joint likelihood ratio, or filename of a pickled numpy
array. Default value: None.

t_xz [ndarray or str or None, optional] Joint scores at theta, or filename of a pickled numpy
array. Default value: None.

x_val [ndarray or str or None, optional] Validation observations, or filename of a pickled
numpy array. If None and validation_split > 0, validation data will be randomly selected
from the training data. Default value: None.

y_val [ndarray or str or None, optional] Validation labels (0 = numerator, 1 = denominator),
or filename of a pickled numpy array. If None and validation_split > 0, validation data will
be randomly selected from the training data. Default value: None.

theta_val [ndarray or str or None, optional] Validation numerator parameter points, or file-
name of a pickled numpy array. If None and validation_split > 0, validation data will be
randomly selected from the training data. Default value: None.

r_xz_val [ndarray or str or None, optional] Validation joint likelihood ratio, or filename of
a pickled numpy array. If None and validation_split > 0, validation data will be randomly
selected from the training data. Default value: None.

t_xz_val [ndarray or str or None, optional] Validation joint scores at theta, or filename of a
pickled numpy array. If None and validation_split > 0, validation data will be randomly
selected from the training data. Default value: None.

alpha [float, optional] Hyperparameter weighting the score error in the loss function of the
‘alices’, ‘rascal’, and ‘cascal’ methods. Default value: 1.

optimizer [{“adam”, “amsgrad”, “sgd”}, optional] Optimization algorithm. Default value:
“amsgrad”.

n_epochs [int, optional] Number of epochs. Default value: 50.

13.8. madminer.ml.parameterized_ratio module 95

MadMiner Documentation, Release 0.8.2

batch_size [int, optional] Batch size. Default value: 128.

initial_lr [float, optional] Learning rate during the first epoch, after which it exponentially
decays to final_lr. Default value: 0.001.

final_lr [float, optional] Learning rate during the last epoch. Default value: 0.0001.

nesterov_momentum [float or None, optional] If trainer is “sgd”, sets the Nesterov momen-
tum. Default value: None.

validation_split [float or None, optional] Fraction of samples used for validation and early
stopping (if early_stopping is True). If None, the entire sample is used for training and
early stopping is deactivated. Default value: 0.25.

early_stopping [bool, optional] Activates early stopping based on the validation loss (only
if validation_split is not None). Default value: True.

scale_inputs [bool, optional] Scale the observables to zero mean and unit variance. Default
value: True.

shuffle_labels [bool, optional] If True, the labels (y, r_xz, t_xz) are shuffled, while the ob-
servations (x) remain in their normal order. This serves as a closure test, in particular as
cross-check against overfitting: an estimator trained with shuffle_labels=True should pre-
dict to likelihood ratios around 1 and scores around 0.

limit_samplesize [int or None, optional] If not None, only this number of samples (events)
is used to train the estimator. Default value: None.

memmap [bool, optional.] If True, training files larger than 1 GB will not be loaded into
memory at once. Default value: False.

verbose [{“all”, “many”, “some”, “few”, “none}, optional] Determines verbosity of training.
Default value: “some”.

scale_parameters [bool, optional] Whether parameters are rescaled to mean zero and unit
variance before going into the neural network. Default value: True.

Returns

result: ndarray Training and validation losses from SingleParameterizedRatioTrainer.train
or DoubleParameterizedRatioTrainer.train for example

13.9 madminer.ml.score module

class madminer.ml.score.ScoreEstimator(features=None, n_hidden=(100,), activation='tanh',
dropout_prob=0.0)

Bases: madminer.ml.base.Estimator

A neural estimator of the score evaluated at a fixed reference hypothesis as a function of the observation
x.

Parameters

features [list of int or None, optional] Indices of observables (features) that are used as input to
the neural networks. If None, all observables are used. Default value: None.

n_hidden [tuple of int, optional] Units in each hidden layer in the neural networks. If method
is ‘nde’ or ‘scandal’, this refers to the setup of each individual MADE layer. Default value:
(100,).

activation [{‘tanh’, ‘sigmoid’, ‘relu’}, optional] Activation function. Default value: ‘tanh’.

96 Chapter 13. madminer.ml package

MadMiner Documentation, Release 0.8.2

Methods

calculate_fisher_information(x[, theta, . . .]) Calculates the expected Fisher information matrix
based on the kinematic information in a given num-
ber of events.

evaluate_log_likelihood(*args, **kwargs) Log likelihood estimation.
evaluate_log_likelihood_ratio(*args,
**kwargs)

Log likelihood ratio estimation.

evaluate_score(x[, theta, nuisance_mode]) Evaluates the score.
load(filename) Loads a trained model from files.
save(filename[, save_model]) Saves the trained model to four files: a JSON file

with the settings, a pickled pyTorch state dict file, and
numpy files for the mean and variance of the inputs
(used for input scaling).

set_nuisance(fisher_information, . . .) Prepares the calculation of profiled scores, see https:
//arxiv.org/pdf/1903.01473.pdf.

train(method, x, t_xz[, x_val, t_xz_val, . . .]) Trains the network.

evaluate
initialize_input_transform

calculate_fisher_information(x, theta=None, weights=None, n_events=1, sum_events=True)
Calculates the expected Fisher information matrix based on the kinematic information in a given number
of events.

Parameters

x [str or ndarray] Sample of observations, or path to numpy file with observations. Note that
this sample has to be sampled from the reference parameter where the score is estimated
with the SALLY / SALLINO estimator.

theta: None or ndarray Numerator parameter point, or filename of a pickled numpy array.
Has no effect for ScoreEstimator.

weights [None or ndarray, optional] Weights for the observations. If None, all events are
taken to have equal weight. Default value: None.

n_events [float, optional] Expected number of events for which the kinematic Fisher infor-
mation should be calculated. Default value: 1.

sum_events [bool, optional] If True, the expected Fisher information summed over the events
x is calculated. If False, the per-event Fisher information for each event is returned. Default
value: True.

Returns

fisher_information [ndarray] Expected kinematic Fisher information matrix with shape
(n_events, n_parameters, n_parameters) if sum_events is False or (n_parameters,
n_parameters) if sum_events is True.

evaluate(*args, **kwargs)

evaluate_log_likelihood(*args, **kwargs)
Log likelihood estimation. Signature depends on the type of estimator. The first returned value is the log
likelihood with shape (n_thetas, n_x).

13.9. madminer.ml.score module 97

https://arxiv.org/pdf/1903.01473.pdf
https://arxiv.org/pdf/1903.01473.pdf

MadMiner Documentation, Release 0.8.2

evaluate_log_likelihood_ratio(*args, **kwargs)
Log likelihood ratio estimation. Signature depends on the type of estimator. The first returned value is the
log likelihood ratio with shape (n_thetas, n_x) or (n_x).

evaluate_score(x, theta=None, nuisance_mode='auto')
Evaluates the score.

Parameters

x [str or ndarray] Observations, or filename of a pickled numpy array.

theta: None or ndarray, optional Has no effect for ScoreEstimator. Introduced just for con-
formity with other Estimators.

nuisance_mode [{“auto”, “keep”, “profile”, “project”}] Decides how nuisance parameters
are treated. If nuisance_mode is “auto”, the returned score is the (n+k)- dimensional score
in the space of n parameters of interest and k nuisance parameters if set_profiling has not
been called, and the n-dimensional profiled score in the space of the parameters of interest
if it has been called. For “keep”, the returned score is always (n+k)-dimensional. For “pro-
file”, it is the n-dimensional profiled score. For “project”, it is the n-dimensional projected
score, i.e. ignoring the nuisance parameters.

Returns

score [ndarray] Estimated score with shape (n_observations, n_parameters).

load(filename)
Loads a trained model from files.

Parameters

filename [str] Path to the files. ‘_settings.json’ and ‘_state_dict.pl’ will be added.

Returns

None

save(filename, save_model=False)
Saves the trained model to four files: a JSON file with the settings, a pickled pyTorch state dict file, and
numpy files for the mean and variance of the inputs (used for input scaling).

Parameters

filename [str] Path to the files. ‘_settings.json’ and ‘_state_dict.pl’ will be added.

save_model [bool, optional] If True, the whole model is saved in addition to the state dict.
This is not necessary for loading it again with Estimator.load(), but can be useful for de-
bugging, for instance to plot the computational graph.

Returns

None

set_nuisance(fisher_information, parameters_of_interest)
Prepares the calculation of profiled scores, see https://arxiv.org/pdf/1903.01473.pdf.

Parameters

fisher_information [ndarray] Fisher information with shape (n_parameters, n_parameters).

parameters_of_interest [list of int] List of int, with 0 <= remaining_components[i] <
n_parameters. Denotes which parameters are kept in the profiling, and their new order.

Returns

None

98 Chapter 13. madminer.ml package

https://arxiv.org/pdf/1903.01473.pdf

MadMiner Documentation, Release 0.8.2

train(method, x, t_xz, x_val=None, t_xz_val=None, optimizer='amsgrad', n_epochs=50, batch_size=128,
initial_lr=0.001, final_lr=0.0001, nesterov_momentum=None, validation_split=0.25,
early_stopping=True, scale_inputs=True, shuffle_labels=False, limit_samplesize=None,
memmap=False, verbose='some', n_workers=8, clip_gradient=None, early_stopping_patience=None)

Trains the network.

Parameters

method [str] The inference method used for training. Currently values are ‘sally’ and
‘sallino’, but at the training stage they are identical. So right now it doesn’t matter which
one you use.

x [ndarray or str] Path to an unweighted sample of observations, as saved by the mad-
miner.sampling.SampleAugmenter functions. Required for all inference methods.

t_xz [ndarray or str] Joint scores at the reference hypothesis, or filename of a pickled numpy
array.

optimizer [{“adam”, “amsgrad”, “sgd”}, optional] Optimization algorithm. Default value:
“amsgrad”.

n_epochs [int, optional] Number of epochs. Default value: 50.

batch_size [int, optional] Batch size. Default value: 128.

initial_lr [float, optional] Learning rate during the first epoch, after which it exponentially
decays to final_lr. Default value: 0.001.

final_lr [float, optional] Learning rate during the last epoch. Default value: 0.0001.

nesterov_momentum [float or None, optional] If trainer is “sgd”, sets the Nesterov momen-
tum. Default value: None.

validation_split [float or None, optional] Fraction of samples used for validation and early
stopping (if early_stopping is True). If None, the entire sample is used for training and
early stopping is deactivated. Default value: 0.25.

early_stopping [bool, optional] Activates early stopping based on the validation loss (only
if validation_split is not None). Default value: True.

scale_inputs [bool, optional] Scale the observables to zero mean and unit variance. Default
value: True.

shuffle_labels [bool, optional] If True, the labels (y, r_xz, t_xz) are shuffled, while the ob-
servations (x) remain in their normal order. This serves as a closure test, in particular as
cross-check against overfitting: an estimator trained with shuffle_labels=True should pre-
dict to likelihood ratios around 1 and scores around 0.

limit_samplesize [int or None, optional] If not None, only this number of samples (events)
is used to train the estimator. Default value: None.

memmap [bool, optional.] If True, training files larger than 1 GB will not be loaded into
memory at once. Default value: False.

verbose [{“all”, “many”, “some”, “few”, “none}, optional] Determines verbosity of training.
Default value: “some”.

Returns

result: ndarray Training and validation losses from LocalScoreTrainer.train

13.9. madminer.ml.score module 99

MadMiner Documentation, Release 0.8.2

13.10 Module contents

100 Chapter 13. madminer.ml package

CHAPTER

FOURTEEN

MADMINER.PLOTTING PACKAGE

14.1 Submodules

14.2 madminer.plotting.distributions module

madminer.plotting.distributions.plot_distributions(filename, observables=None,
parameter_points=None,
uncertainties='nuisance',
nuisance_parameters=None,
draw_nuisance_toys=None, normalize=False,
log=False, observable_labels=None, n_bins=50,
line_labels=None, colors=None, linestyles=None,
linewidths=1.5, toy_linewidths=0.5, alpha=0.15,
toy_alpha=0.75, n_events=None, n_toys=100,
n_cols=3, quantiles_for_range=(0.025, 0.975),
sample_only_from_closest_benchmark=True)

Plots one-dimensional histograms of observables in a MadMiner file for a given set of benchmarks.

Parameters

filename [str] Filename of a MadMiner HDF5 file.

observables [list of str or None, optional] Which observables to plot, given by a list of their
names. If None, all observables in the file are plotted. Default value: None.

parameter_points [list of (str or ndarray) or None, optional] Which parameter points to use for
histogramming the data. Given by a list, each element can either be the name of a benchmark
in the MadMiner file, or an ndarray specifying any parameter point in a morphing setup.
If None, all physics (non-nuisance) benchmarks defined in the MadMiner file are plotted.
Default value: None.

uncertainties [{“nuisance”, “none”}, optional] Defines how uncertainty bands are drawn. With
“nuisance”, the variation in cross section from all nuisance parameters is added in quadrature.
With “none”, no error bands are drawn.

nuisance_parameters [None or list of int, optional] If uncertainties is “nuisance”, this can re-
strict which nuisance parameters are used to draw the uncertainty bands. Each entry of this
list is the index of one nuisance parameter (same order as in the MadMiner file).

draw_nuisance_toys [None or int, optional] If not None and uncertainties is “nuisance”, sets
the number of nuisance toy distributions that are drawn (in addition to the error bands).

normalize [bool, optional] Whether the distribution is normalized to the total cross section.
Default value: False.

101

MadMiner Documentation, Release 0.8.2

log [bool, optional] Whether to draw the y axes on a logarithmic scale. Default value: False.

observable_labels [None or list of (str or None), optional] x-axis labels naming the observables.
If None, the observable names from the MadMiner file are used. Default value: None.

n_bins [int, optional] Number of histogram bins. Default value: 50.

line_labels [None or list of (str or None), optional] Labels for the different parameter points. If
None and if parameter_points is None, the benchmark names from the MadMiner file are
used. Default value: None.

colors [None or str or list of str, optional] Matplotlib line (and error band) colors for the distri-
butions. If None, uses default colors. Default value: None.

linestyles [None or str or list of str, optional] Matplotlib line styles for the distributions. If None,
uses default linestyles. Default value: None.

linewidths [float or list of float, optional] Line widths for the contours. Default value: 1.5.

toy_linewidths [float or list of float or None, optional] Line widths for the toy replicas, if un-
certainties is “nuisance” and draw_nuisance_toys is not None. If None, linewidths is used.
Default value: 1.

alpha [float, optional] alpha value for the uncertainty bands. Default value: 0.25.

toy_alpha [float, optional] alpha value for the toy replicas, if uncertainties is “nuisance” and
draw_nuisance_toys is not None. Default value: 0.75.

n_events [None or int, optional] If not None, sets the number of events from the MadMiner file
that will be analyzed and plotted. Default value: None.

n_toys [int, optional] Number of toy nuisance parameter vectors used to estimate the systematic
uncertainties. Default value: 100.

n_cols [int, optional] Number of columns of subfigures in the plot. Default value: 3.

quantiles_for_range [tuple of two float, optional] Tuple (min_quantile, max_quantile) that de-
fines how the observable range is determined for each panel. Default: (0.025, 0.075).

sample_only_from_closest_benchmark [bool, optional] If True, only weighted events origi-
nally generated from the closest benchmarks are used. Default value: True.

Returns

figure [Figure] Plot as Matplotlib Figure instance.

madminer.plotting.distributions.plot_histograms(histos, observed=None, observed_weights=None,
xrange=None, yrange=None, zrange=None,
log=False, histo_labels=None,
observed_label='Data', xlabel=None, ylabel=None,
zlabel=None, colors=None, linestyles=None,
linewidths=1.5, markercolor='black',
markersize=20.0, cmap='viridis', n_cols=2)

102 Chapter 14. madminer.plotting package

MadMiner Documentation, Release 0.8.2

14.3 madminer.plotting.fisherinformation module

madminer.plotting.fisherinformation.plot_distribution_of_information(xbins, xsecs,
fisher_information_matrices,
fisher_information_matrices_aux=None,
xlabel=None, xmin=None,
xmax=None,
log_xsec=False,
norm_xsec=True,
epsilon=1e-09,
figsize=(5.4, 4.5),
fontsize=None)

Plots the distribution of the cross section together with the distribution of the Fisher information.

Parameters

xbins [list of float] Bin boundaries.

xsecs [list of float] Cross sections (in pb) per bin.

fisher_information_matrices [list of ndarray] Fisher information matrices for each bin.

fisher_information_matrices_aux [list of ndarray or None, optional] Additional Fisher infor-
mation matrices for each bin (will be plotted with a dashed line).

xlabel [str or None, optional] Label for the x axis.

xmin [float or None, optional] Minimum value for the x axis.

xmax [float or None, optional] Maximum value for the x axis.

log_xsec [bool, optional] Whether to plot the cross section on a logarithmic y axis.

norm_xsec [bool, optional] Whether the cross sections are normalized to 1.

epsilon [float, optional] Numerical factor.

figsize [tuple of float, optional] Figure size, default: (5.4, 4.5)

fontsize: float, optional Fontsize, default None

Returns

figure [Figure] Plot as Matplotlib Figure instance.

14.3. madminer.plotting.fisherinformation module 103

MadMiner Documentation, Release 0.8.2

madminer.plotting.fisherinformation.plot_fisher_information_contours_2d(fisher_information_matrices,
fisher_information_covariances=None,
refer-
ence_thetas=None,
contour_distance=1.0,
xlabel='$\\theta_0$',
ylabel='$\\theta_1$',
xrange=(- 1.0, 1.0),
yrange=(- 1.0, 1.0),
labels=None,
inline_labels=None,
resolution=500,
colors=None,
linestyles=None,
linewidths=1.5,
alphas=1.0, al-
phas_uncertainties=0.25,
sigma_uncertainties=1,
ax=None)

Visualizes 2x2 Fisher information matrices as contours of constant Fisher distance from a reference point theta0.

The local (tangent-space) approximation is used: distances d(theta) are given by d(theta)^2 = (theta - theta0)_i
I_ij (theta - theta0)_j, summing over i and j.

Parameters

fisher_information_matrices [list of ndarray] Fisher information matrices, each with shape
(2,2).

fisher_information_covariances [None or list of (ndarray or None), optional] Covari-
ance matrices for the Fisher information matrices. Has to have the same length as
fisher_information_matrices, and each entry has to be None (no uncertainty) or a tensor
with shape (2,2,2,2). Default value: None.

reference_thetas [None or list of (ndarray or None), optional] Reference points from which the
distances are calculated. If None, the origin (0,0) is used. Default value: None.

contour_distance [float, optional.] Distance threshold at which the contours are drawn. Default
value: 1.

xlabel [str, optional] Label for the x axis. Default value: r’$ heta_0$’.

ylabel [str, optional] Label for the y axis. Default value: r’$ heta_1$’.

xrange [tuple of float, optional] Range (min, max) for the x axis. Default value: (-1., 1.).

yrange [tuple of float, optional] Range (min, max) for the y axis. Default value: (-1., 1.).

labels [None or list of (str or None), optional] Legend labels for the contours. Default value:
None.

inline_labels [None or list of (str or None), optional] Inline labels for the contours. Default
value: None.

resolution [int] Number of points per axis for the calculation of the distances. Default value:
500.

colors [None or str or list of str, optional] Matplotlib line (and error band) colors for the contours.
If None, uses default colors. Default value: None.

104 Chapter 14. madminer.plotting package

MadMiner Documentation, Release 0.8.2

linestyles [None or str or list of str, optional] Matploitlib line styles for the contours. If None,
uses default linestyles. Default value: None.

linewidths [float or list of float, optional] Line widths for the contours. Default value: 1.5.

alphas [float or list of float, optional] Opacities for the contours. Default value: 1.

alphas_uncertainties [float or list of float, optional] Opacities for the error bands. Default value:
0.25.

sigma_uncertainties [float, optional] Number of gaussian sigmas used when presenting uncer-
tainty bands. Default value: 1.

ax: axes or None, optional Predefined axes as part of figure instead of standalone figure. De-
fault: None

Returns

figure [Figure] Plot as Matplotlib Figure instance.

madminer.plotting.fisherinformation.plot_fisherinfo_barplot(fisher_information_matrices, labels,
determinant_indices=None,
eigenvalue_colors=None,
bar_colors=None)

Parameters

fisher_information_matrices [list of ndarray] Fisher information matrices

labels [list of str] Labels for the x axis

determinant_indices [list of int or None, optional] If not None, the determinants will be based
only on the indices given here. Default value: None.

eigenvalue_colors [None or list of str] Colors for the eigenvalue decomposition. If None, default
colors are used. Default value: None.

bar_colors [None or list of str] Colors for the determinant bars. If None, default colors are used.
Default value: None.

Returns

figure [Figure] Plot as Matplotlib Figure instance.

14.4 madminer.plotting.limits module

madminer.plotting.limits.plot_pvalue_limits(p_values, best_fits, labels, grid_ranges, grid_resolutions,
levels=[0.32], single_plot=True, show_index=None,
xlabel='$\\theta_0$', ylabel='$\\theta_1$',
p_val_min=0.001, p_val_max=1)

Function that plots the limits obtained from the AsymptoticLimits, Likelihood, FisherInformation and Informa-
tion Geometry class. Note that only 2 dimensional grids are supported.

Parameters

p_values [list of ndarray or dict] List/dictionary of p-values with shape (nmethods, ngridpoints)

best_fits [list of int or dict] List/dictionary of best fit points for each method with shape (nmeth-
ods)

14.4. madminer.plotting.limits module 105

MadMiner Documentation, Release 0.8.2

labels [list of string or None] List/dictionary of best labels for each method with shape (nmeth-
ods). If None, it is assumed that dictionaries are provided and all entries will be used.

grid_ranges [list of (tuple of float) or None, optional] Specifies the boundaries of the parameter
grid on which the p-values are evaluated. It should be [(min, max), (min, max), . . . , (min,
max)], where the list goes over all parameters and min and max are float. If None, thetas_eval
has to be given. Default: None.

grid_resolutions [int or list of int, optional] Resolution of the parameter space grid on which the
p-values are evaluated. If int, the resolution is the same along every dimension of the hyper-
cube. If list of int, the individual entries specify the number of points along each parameter
individually. Doesn’t have any effect if grid_ranges is None. Default value: 25.

levels [list of float, optional] list of p-values used to draw contour lines. Default: [0.32]

single_plot [bool, optional] If True, only one sumamry plot is shown which contains confidence
contours and best fit points for all methods, and the p-value grid for a selected method (if
show_index is not None). If False, additional plots with the p-value grid, confidence contours
and best fit points for all methods are provided. Default: True

show_index [int, optional] If None, no p-value grid is shown in sumamry plot. If show_index=n,
the p-value grid of the nth method is shown in the summary plot. Default is None.

xlabel,ylabel [string, optional] Labels for the x and y axis. Default: xlabel=r’$ heta_0$’ and
ylabel=r’$ heta_1$’.

p_val_min,p_val_max [float, optional] Plot range for p-values. Default: p_val_min=0.001 and
p_val_max=1.

14.5 madminer.plotting.morphing module

madminer.plotting.morphing.plot_1d_morphing_basis(morpher, xlabel='$\\theta$', xrange=(- 1.0, 1.0),
resolution=100)

Visualizes a morphing basis and morphing errors for problems with a two-dimensional parameter space.

Parameters

morpher [PhysicsMorpher] PhysicsMorpher instance with defined basis.

xlabel [str, optional] Label for the x axis. Default value: r’$ heta$’.

xrange [tuple of float, optional] Range (min, max) for the x axis. Default value: (-1., 1.).

resolution [int, optional] Number of points per axis for the rendering of the squared morphing
weights. Default value: 100.

Returns

figure [Figure] Plot as Matplotlib Figure instance.

madminer.plotting.morphing.plot_2d_morphing_basis(morpher, xlabel='$\\theta_0$',
ylabel='$\\theta_1$', xrange=(- 1.0, 1.0), yrange=(-
1.0, 1.0), crange=(1.0, 100.0), resolution=100)

Visualizes a morphing basis and morphing errors for problems with a two-dimensional parameter space.

Parameters

morpher [PhysicsMorpher] PhysicsMorpher instance with defined basis.

xlabel [str, optional] Label for the x axis. Default value: r’$ heta_0$’.

ylabel [str, optional] Label for the y axis. Default value: r’$ heta_1$’.

106 Chapter 14. madminer.plotting package

MadMiner Documentation, Release 0.8.2

xrange [tuple of float, optional] Range (min, max) for the x axis. Default value: (-1., 1.).

yrange [tuple of float, optional] Range (min, max) for the y axis. Default value: (-1., 1.).

crange [tuple of float, optional] Range (min, max) for the color map. Default value: (1., 100.).

resolution [int, optional] Number of points per axis for the rendering of the squared morphing
weights. Default value: 100.

Returns

figure [Figure] Plot as Matplotlib Figure instance.

madminer.plotting.morphing.plot_nd_morphing_basis_scatter(morpher, crange=(1.0, 100.0),
n_test_thetas=1000)

Visualizes a morphing basis and morphing errors with scatter plots between each pair of operators.

Parameters

morpher [PhysicsMorpher] PhysicsMorpher instance with defined basis.

crange [tuple of float, optional] Range (min, max) for the color map. Default value: (1. 100.).

n_test_thetas [int, optional] Number of random points evaluated. Default value: 1000.

Returns

figure [Figure] Plot as Matplotlib Figure instance.

madminer.plotting.morphing.plot_nd_morphing_basis_slices(morpher, crange=(1.0, 100.0),
resolution=50)

Visualizes a morphing basis and morphing errors with two-dimensional slices through parameter space.

Parameters

morpher [PhysicsMorpher] PhysicsMorpher instance with defined basis.

crange [tuple of float, optional] Range (min, max) for the color map.

resolution [int, optional] Number of points per panel and axis for the rendering of the squared
morphing weights. Default value: 50.

Returns

figure [Figure] Plot as Matplotlib Figure instance.

14.6 madminer.plotting.uncertainties module

madminer.plotting.uncertainties.plot_systematics(filename, theta, observable, obs_label, obs_range,
n_bins=50, n_events=None, n_toys=100,
linecolor='black', bandcolors=None,
band_alpha=0.2, ratio_range=(0.8, 1.2))

Plots absolute and relative uncertainty bands for all systematic uncertainties in a histogram of one observable in
a MadMiner file.

Parameters

filename [str] Filename of a MadMiner HDF5 file.

theta [ndarray, optional] Which parameter points to use for histogramming the data.

observable [str] Which observable to plot, given by its name in the MadMiner file.

obs_label [str] x-axis label naming the observable.

14.6. madminer.plotting.uncertainties module 107

MadMiner Documentation, Release 0.8.2

obs_range [tuple of two float] Range to be plotted for the observable.

n_bins [int] Number of bins. Default value: 50.

n_events [None or int, optional] If not None, sets the number of events from the MadMiner file
that will be analyzed and plotted. Default value: None.

n_toys [int, optional] Number of toy nuisance parameter vectors used to estimate the systematic
uncertainties. Default value: 100.

linecolor [str, optional] Line color for central prediction. Default value: “black”.

bandcolors [None or list of str, optional] Error band colors. Default value: None.

ratio_range [tuple of two float] y-axis range for the plots of the ratio to the central prediction.
Default value: (0.8, 1.2).

Returns

figure [Figure] Plot as Matplotlib Figure instance.

madminer.plotting.uncertainties.plot_uncertainty(filename, theta, observable, obs_label, obs_range,
n_bins=50, systematics=None, n_events=None,
n_toys=100, linecolor='black',
bandcolor1='#CC002E', bandcolor2='orange',
ratio_range=(0.8, 1.2))

Plots absolute and relative uncertainty bands in a histogram of one observable in a MadMiner file.

Parameters

filename [str] Filename of a MadMiner HDF5 file.

theta [ndarray, optional] Which parameter points to use for histogramming the data.

observable [str] Which observable to plot, given by its name in the MadMiner file.

obs_label [str] x-axis label naming the observable.

obs_range [tuple of two float] Range to be plotted for the observable.

n_bins [int] Number of bins. Default value: 50.

systematics [None or list of str, optional] This can restrict which nuisance parameters are used
to draw the uncertainty bands. Each entry of this list is the name of a systematic uncertainty
(see MadMiner.add_systematics()).

n_events [None or int, optional] If not None, sets the number of events from the MadMiner file
that will be analyzed and plotted. Default value: None.

n_toys [int, optional] Number of toy nuisance parameter vectors used to estimate the systematic
uncertainties. Default value: 100.

linecolor [str, optional] Line color for central prediction. Default value: “black”.

bandcolor1 [str, optional] Error band color for 1 sigma uncertainty. Default value: “#CC002E”.

bandcolor2 [str, optional] Error band color for 2 sigma uncertainty. Default value: “orange”.

ratio_range [tuple of two floar] y-axis range for the plots of the ratio to the central prediction.
Default value: (0.8, 1.2).

Returns

figure [Figure] Plot as Matplotlib Figure instance.

108 Chapter 14. madminer.plotting package

MadMiner Documentation, Release 0.8.2

14.7 Module contents

14.7. Module contents 109

MadMiner Documentation, Release 0.8.2

110 Chapter 14. madminer.plotting package

CHAPTER

FIFTEEN

MADMINER.SAMPLING PACKAGE

15.1 Submodules

15.2 madminer.sampling.combine module

madminer.sampling.combine.combine_and_shuffle(input_filenames, output_filename, k_factors=None,
overwrite_existing_file=True,
recalculate_header=True)

Combines multiple MadMiner files into one, and shuffles the order of the events.

Note that this function assumes that all samples are generated with the same setup, including identical bench-
marks (and thus morphing setup). If it is used with samples with different settings, there will be wrong results!
There are no explicit cross checks in place yet!

Parameters

input_filenames [list of str] List of paths to the input MadMiner files.

output_filename [str] Path to the combined MadMiner file.

k_factors [float or list of float, optional] Multiplies the weights in input_filenames with a uni-
versal factor (if k_factors is a float) or with independent factors (if it is a list of float). Default
value: None.

overwrite_existing_file [bool, optional] If True and if the output file exists, it is overwritten.
Default value: True.

recalculate_header [bool, optional] Recalculates the total number of events. Default value:
True.

Returns

None

15.3 madminer.sampling.parameters module

madminer.sampling.parameters.benchmark(benchmark_name)
Utility function to be used as input to various SampleAugmenter functions, specifying a single parameter bench-
mark.

Parameters

benchmark_name [str] Name of the benchmark (as in mad-
miner.core.MadMiner.add_benchmark)

111

MadMiner Documentation, Release 0.8.2

Returns

output [tuple] Input to various SampleAugmenter functions

madminer.sampling.parameters.benchmarks(benchmark_names)
Utility function to be used as input to various SampleAugmenter functions, specifying multiple parameter bench-
marks.

Parameters

benchmark_names [list of str] List of names of the benchmarks (as in mad-
miner.core.MadMiner.add_benchmark)

Returns

output [tuple] Input to various SampleAugmenter functions

madminer.sampling.parameters.iid_nuisance_parameters(shape='gaussian', param0=0.0, param1=1.0)
Utility function to be used as input to various SampleAugmenter functions, specifying that nuisance parameters
are fixed at their nominal values.

Parameters

shape [[“flat”, “gaussian”], optional] Parameter prior shape. Default value: “gaussian”.

param0 [float, optional] Gaussian mean or flat lower bound. Default value: 0.0.

param1 [float, optional] Gaussian std or flat upper bound. Default value: 1.0.

Returns

output [tuple] Input to various SampleAugmenter functions.

madminer.sampling.parameters.morphing_point(theta)
Utility function to be used as input to various SampleAugmenter functions, specifying a single parameter point
theta in a morphing setup.

Parameters

theta [ndarray or list] Parameter point with shape (n_parameters,)

Returns

output [tuple] Input to various SampleAugmenter functions

madminer.sampling.parameters.morphing_points(thetas)
Utility function to be used as input to various SampleAugmenter functions, specifying multiple parameter points
theta in a morphing setup.

Parameters

thetas [ndarray or list of lists or list of ndarrays] Parameter points with shape (n_thetas,
n_parameters)

Returns

output [tuple] Input to various SampleAugmenter functions

madminer.sampling.parameters.nominal_nuisance_parameters()
Utility function to be used as input to various SampleAugmenter functions, specifying that nuisance parameters
are fixed at their nominal values.

Returns

output [tuple] Input to various SampleAugmenter functions

112 Chapter 15. madminer.sampling package

MadMiner Documentation, Release 0.8.2

madminer.sampling.parameters.random_morphing_points(n_thetas, priors)
Utility function to be used as input to various SampleAugmenter functions, specifying random parameter points
sampled from a prior in a morphing setup.

Parameters

n_thetas [int] Number of parameter points to be sampled

priors [list of tuples] Priors for each parameter is characterized by a tuple of the form
(prior_shape, prior_param_0, prior_param_1). Currently, the supported prior_shapes are
flat, in which case the two other parameters are the lower and upper bound of the flat prior,
and gaussian, in which case they are the mean and standard deviation of a Gaussian.

Returns

output [tuple] Input to various SampleAugmenter functions

15.4 madminer.sampling.sampleaugmenter module

class madminer.sampling.sampleaugmenter.SampleAugmenter(filename, disable_morphing=False,
include_nuisance_parameters=True)

Bases: madminer.analysis.dataanalyzer.DataAnalyzer

Sampling / unweighting and data augmentation.

After the generated events have been analyzed and the observables and weights have been saved into a MadMiner
file, for instance with madminer.delphes.DelphesReader or madminer.lhe.LHEReader, the next step is typically
the generation of training and evaluation data for the machine learning algorithms. This generally involves two
(related) tasks: unweighting, i.e. the creation of samples that do not carry individual weights but follow some
distribution, and the extraction of the joint likelihood ratio and / or joint score (the “augmented data”).

After initializing SampleAugmenter with the filename of a MadMiner file, this is done with a single function
call. Depending on the downstream inference algorithm, there are different possibilities:

• SampleAugmenter.sample_train_plain() creates plain training samples without augmented data.

• SampleAugmenter.sample_train_local() creates training samples for local methods based on the score, such
as SALLY and SALLINO.

• SampleAugmenter.sample_train_density() creates training samples for non-local methods based on density
estimation and the score, such as SCANDAL.

• SampleAugmenter.sample_train_ratio() creates training samples for non-local, ratio-based methods like
RASCAL or ALICE.

• SampleAugmenter.sample_train_more_ratios() does the same, but can extract joint ratios and scores at
more parameter points. This additional information can be used efficiently in the setup with a “doubly pa-
rameterized” likelihood ratio estimator that models the dependence on both the numerator and denominator
hypothesis.

• SampleAugmenter.sample_test() creates evaluation samples for all methods.

Please see the tutorial for a walkthrough.

For the curious, let us explain these steps in a little bit more detail (assuming a morphing setup):

• The sample augmentation step starts from a set of events (x_i, z_i) together with corresponding weights for
each morphing basis point theta_b, p(x_i, z_i | theta_b).

15.4. madminer.sampling.sampleaugmenter module 113

MadMiner Documentation, Release 0.8.2

• Morphing: Assume we want to generate data sampled from a parameter point theta, which is not necessarily
one of the basis points theta_b. Using the morphing structure, the event weights for p(x_i, z_i | theta) can
be calculated. Note that the events (phase-space points) (x_i, z_i) are not changed, only their weights.

• Unweighting: For the machine learning part, such a weighted event sample is not practical. Instead we aim
for an unweighted one, in which events can appear multiple times. If the user request N events (which can be
larger than the original number of events in the MadGraph runs), SampleAugmenter will draw N samples
(x_i, z_i) from the discrete distribution p(x_i, z_i | theta). In other words, it draws (with replacement) N of
the original events from MadGraph, with probabilities given by the morphing setup before. This is similar
to what np.random.choice() does.

• Augmentation: For each of the drawn samples, the morphing setup can be used to calculate the joint like-
lihood ratio and / or the joint score (this depends on which SampleAugmenter function is called).

Parameters

filename [str] Path to MadMiner file (for instance the output of mad-
miner.delphes.DelphesProcessor.save()).

disable_morphing [bool, optional] If True, the morphing setup is not loaded from the file. De-
fault value: False.

include_nuisance_parameters [bool, optional] If True, nuisance parameters are taken into ac-
count. Default value: True.

Methods

cross_sections(theta[, nu]) Calculates the total cross sections for all specified
thetas.

event_loader([start, end, batch_size, . . .]) Yields batches of events in the MadMiner file.
sample_test(theta, n_samples[, nu, . . .]) Extracts evaluation samples x ~ p(x|theta) without

any augmented data.
sample_train_density(theta, n_samples[, nu,
. . .])

Extracts training samples x ~ p(x|theta) as well as the
joint score t(x, z|theta), where theta is sampled from
a prior.

sample_train_local(theta, n_samples[, nu, . . .]) Extracts training samples x ~ p(x|theta) as well as the
joint score t(x, z|theta).

sample_train_more_ratios(theta0, theta1, . . .) Extracts training samples x ~ p(x|theta0) and x ~
p(x|theta1) together with the class label y, the joint
likelihood ratio r(x,z|theta0, theta1), and the joint
score t(x,z|theta0).

sample_train_plain(theta, n_samples[, nu, . . .]) Extracts plain training samples x ~ p(x|theta) without
any augmented data.

sample_train_ratio(theta0, theta1, n_samples) Extracts training samples x ~ p(x|theta0) and x ~
p(x|theta1) together with the class label y, the joint
likelihood ratio r(x,z|theta0, theta1), and, if morph-
ing is set up, the joint score t(x,z|theta0).

weighted_events([theta, nu, start_event, . . .]) Returns all events together with the benchmark
weights (if theta is None) or weights for a given theta.

xsec_gradients(thetas[, nus, partition, . . .]) Returns the gradient of total cross sections with re-
spect to parameters.

xsecs([thetas, nus, partition, test_split, . . .]) Returns the total cross sections for benchmarks or pa-
rameter points.

114 Chapter 15. madminer.sampling package

MadMiner Documentation, Release 0.8.2

cross_sections(theta, nu=None)
Calculates the total cross sections for all specified thetas.

Parameters

theta [tuple] Tuple (type, value) that defines the parameter point or prior over parameter
points at which the cross section is calculated. Pass the output of the functions benchmark(),
benchmarks(), morphing_point(), morphing_points(), or random_morphing_points().

nu [tuple or None, optional] Tuple (type, value) that defines the nuisance parameter point
or prior over nuisance parameter points at which the cross section is calculated. Pass the
output of the functions benchmark(), benchmarks(), morphing_point(), morphing_points(),
or random_morphing_points(). Default value: None.

Returns

thetas [ndarray] Parameter points with shape (n_thetas, n_parameters) or (n_thetas,
n_parameters + n_nuisance_parameters).

xsecs [ndarray] Total cross sections in pb with shape (n_thetas,).

xsec_uncertainties [ndarray] Statistical uncertainties on the total cross sections in pb with
shape (n_thetas,).

sample_test(theta, n_samples, nu=None, sample_only_from_closest_benchmark=True, folder=None,
filename=None, test_split=0.2, validation_split=0.2, partition='test', n_processes=1,
n_eff_forced=None, double_precision=False)

Extracts evaluation samples x ~ p(x|theta) without any augmented data.

Parameters

theta [tuple] Tuple (type, value) that defines the parameter point or prior over parameter
points for the sampling. Pass the output of the functions constant_benchmark_theta(),
multiple_benchmark_thetas(), constant_morphing_theta(), multiple_morphing_thetas(),
or random_morphing_thetas().

n_samples [int] Total number of events to be drawn.

nu [None or tuple, optional] Tuple (type, value) that defines the nuisance parameter point or
prior over parameter points for the sampling. Default value: None

sample_only_from_closest_benchmark [bool, optional] If True, only weighted events
originally generated from the closest benchmarks are used. Default value: True.

folder [str or None] Path to the folder where the resulting samples should be saved (ndarrays
in .npy format). Default value: None.

filename [str or None] Filenames for the resulting samples. A prefix such as ‘x’ or ‘theta0’
as well as the extension ‘.npy’ will be added automatically. Default value: None.

test_split [float or None, optional] Fraction of events reserved for the evaluation sample (that
will not be used for any training samples). Default value: 0.2.

validation_split [float or None, optional] Fraction of events reserved for testing. Default
value: 0.2.

partition [{“train”, “test”, “validation”, “all”}, optional] Which event partition to use. De-
fault value: “test”.

n_processes [None or int, optional] If None or larger than 1, MadMiner will use multipro-
cessing to parallelize the sampling. In this case, n_workers sets the number of jobs running
in parallel, and None will use the number of CPUs. Default value: 1.

15.4. madminer.sampling.sampleaugmenter module 115

MadMiner Documentation, Release 0.8.2

n_eff_forced [float, optional] If not None, MadMiner will require the relative weights of the
events to be smaller than 1/n_eff_forced and ignore other events. This can help to reduce
statistical effects caused by a small number of events with very large weights obtained by
the morphing procedure. Default value: None

double_precision [bool, optional] Use double floating-point precision. Default value: False

Returns

x [ndarray] Observables with shape (n_samples, n_observables). The same information is
saved as a file in the given folder.

theta [ndarray] Parameter points used for sampling with shape (n_samples, n_parameters).
The same information is saved as a file in the given folder.

effective_n_samples [int] Effective number of samples, defined as
1/max(event_probabilities), where event_probabilities are the fractions of the cross
section carried by each event.

sample_train_density(theta, n_samples, nu=None, sample_only_from_closest_benchmark=True,
folder=None, filename=None, nuisance_score='auto', test_split=0.2,
validation_split=0.2, partition='train', n_processes=1, n_eff_forced=None,
double_precision=False)

Extracts training samples x ~ p(x|theta) as well as the joint score t(x, z|theta), where theta is sampled from
a prior. This can be used for inference methods such as SCANDAL.

Parameters

theta [tuple] Tuple (type, value) that defines the numerator parameter point or prior
over parameter points for the sampling. Pass the output of the functions con-
stant_benchmark_theta(), multiple_benchmark_thetas(), constant_morphing_theta(), mul-
tiple_morphing_thetas(), or random_morphing_thetas().

n_samples [int] Total number of events to be drawn.

nu [None or tuple, optional] Tuple (type, value) that defines the nuisance parameter point or
prior over parameter points for the sampling. Default value: None

sample_only_from_closest_benchmark [bool, optional] If True, only weighted events
originally generated from the closest benchmarks are used. Default value: True.

folder [str or None] Path to the folder where the resulting samples should be saved (ndarrays
in .npy format). Default value: None.

filename [str or None] Filenames for the resulting samples. A prefix such as ‘x’ or ‘theta0’
as well as the extension ‘.npy’ will be added automatically. Default value: None.

nuisance_score [bool or “auto”, optional] If True, the score with respect to the nuisance
parameters (at the default position) will also be calculated. If False, only the score with
respect to the physics parameters is calculated. For “auto”, the nuisance score will be
calculated if a nuisance setup is defined. Default: True.

test_split [float or None, optional] Fraction of events reserved for the evaluation sample (that
will not be used for any training samples). Default value: 0.2.

validation_split [float or None, optional] Fraction of events reserved for testing. Default
value: 0.2.

partition [{“train”, “test”, “validation”, “all”}, optional] Which event partition to use. De-
fault value: “train”.

116 Chapter 15. madminer.sampling package

MadMiner Documentation, Release 0.8.2

n_processes [None or int, optional] If None or larger than 1, MadMiner will use multipro-
cessing to parallelize the sampling. In this case, n_workers sets the number of jobs running
in parallel, and None will use the number of CPUs. Default value: 1.

n_eff_forced [float, optional] If not None, MadMiner will require the relative weights of the
events to be smaller than 1/n_eff_forced and ignore other events. This can help to reduce
statistical effects caused by a small number of events with very large weights obtained by
the morphing procedure. Default value: None

double_precision [bool, optional] Use double floating-point precision. Default value: False.

Returns

x [ndarray] Observables with shape (n_samples, n_observables). The same information is
saved as a file in the given folder.

theta [ndarray] Parameter points used for sampling (and evaluation of the joint score) with
shape (n_samples, n_parameters). The same information is saved as a file in the given
folder.

t_xz [ndarray] Joint score evaluated at theta with shape (n_samples, n_parameters). The
same information is saved as a file in the given folder.

effective_n_samples [int] Effective number of samples, defined as
1/max(event_probabilities), where event_probabilities are the fractions of the cross
section carried by each event.

sample_train_local(theta, n_samples, nu=None, sample_only_from_closest_benchmark=True,
folder=None, filename=None, nuisance_score='auto', test_split=0.2,
validation_split=0.2, partition='train', n_processes=1, log_message=True,
n_eff_forced=None, double_precision=False)

Extracts training samples x ~ p(x|theta) as well as the joint score t(x, z|theta). This can be used for inference
methods such as SALLY and SALLINO.

Parameters

theta [tuple] Tuple (type, value) that defines the parameter point for the sampling. This is also
where the score is evaluated. Pass the output of the functions constant_benchmark_theta()
or constant_morphing_theta().

n_samples [int] Total number of events to be drawn.

nu [None or tuple, optional] Tuple (type, value) that defines the nuisance parameter point or
prior over parameter points for the sampling. Default value: None

sample_only_from_closest_benchmark [bool, optional] If True, only weighted events
originally generated from the closest benchmarks are used. Default value: True.

folder [str or None] Path to the folder where the resulting samples should be saved (ndarrays
in .npy format). Default value: None.

filename [str or None] Filenames for the resulting samples. A prefix such as ‘x’ or ‘theta0’
as well as the extension ‘.npy’ will be added automatically. Default value: None.

nuisance_score [bool or “auto”, optional] If True, the score with respect to the nuisance
parameters (at the default position) will also be calculated. If False, only the score with
respect to the physics parameters is calculated. For “auto”, the nuisance score will be
calculated if a nuisance setup is defined. Default: True.

test_split [float or None, optional] Fraction of events reserved for the evaluation sample (that
will not be used for any training samples). Default value: 0.2.

15.4. madminer.sampling.sampleaugmenter module 117

MadMiner Documentation, Release 0.8.2

validation_split [float or None, optional] Fraction of events reserved for testing. Default
value: 0.2.

partition [{“train”, “test”, “validation”, “all”}, optional] Which event partition to use. De-
fault value: “train”.

n_processes [None or int, optional] If None or larger than 1, MadMiner will use multipro-
cessing to parallelize the sampling. In this case, n_workers sets the number of jobs running
in parallel, and None will use the number of CPUs. Default value: 1.

log_message [bool, optional] If True, logging output. This option is only designed for inter-
nal use.

n_eff_forced [float, optional] If not None, MadMiner will require the relative weights of the
events to be smaller than 1/n_eff_forced and ignore other events. This can help to reduce
statistical effects caused by a small number of events with very large weights obtained by
the morphing procedure. Default value: None

double_precision [bool, optional] Use double floating-point precision. Default value: False.

Returns

x [ndarray] Observables with shape (n_samples, n_observables). The same information is
saved as a file in the given folder.

theta [ndarray] Parameter points used for sampling (and evaluation of the joint score) with
shape (n_samples, n_parameters). The same information is saved as a file in the given
folder.

t_xz [ndarray] Joint score evaluated at theta with shape (n_samples, n_parameters +
n_nuisance_parameters) (if nuisance_score is True) or (n_samples, n_parameters). The
same information is saved as a file in the given folder.

effective_n_samples [int] Effective number of samples, defined as
1/max(event_probabilities), where event_probabilities are the fractions of the cross
section carried by each event.

sample_train_more_ratios(theta0, theta1, n_samples, nu0=None, nu1=None,
sample_only_from_closest_benchmark=True, folder=None, filename=None,
additional_thetas=None, nuisance_score='auto', test_split=0.2,
validation_split=0.2, partition='train', n_processes=1, n_eff_forced=None,
double_precision=False)

Extracts training samples x ~ p(x|theta0) and x ~ p(x|theta1) together with the class label y, the joint likeli-
hood ratio r(x,z|theta0, theta1), and the joint score t(x,z|theta0). This information can be used in inference
methods such as CARL, ROLR, CASCAL, and RASCAL.

With the keyword additional_thetas, this function allows to extract joint ratios and scores at more parameter
points than just theta0 and theta1. This additional information can be used efficiently in the setup with a
“doubly parameterized” likelihood ratio estimator that models the dependence on both the numerator and
denominator hypothesis.

Parameters

theta0 : Tuple (type, value) that defines the numerator parameter point or prior over param-
eter points for the sampling. Pass the output of the functions constant_benchmark_theta(),
multiple_benchmark_thetas(), constant_morphing_theta(), multiple_morphing_thetas(),
or random_morphing_thetas().

theta1 : Tuple (type, value) that defines the denominator parameter point or prior over param-
eter points for the sampling. Pass the output of the functions constant_benchmark_theta(),

118 Chapter 15. madminer.sampling package

MadMiner Documentation, Release 0.8.2

multiple_benchmark_thetas(), constant_morphing_theta(), multiple_morphing_thetas(),
or random_morphing_thetas().

n_samples [int] Total number of events to be drawn.

nu0 [None or tuple, optional] Tuple (type, value) that defines the numerator nuisance param-
eter point or prior over parameter points for the sampling. Default value: None

nu1 [None or tuple, optional] Tuple (type, value) that defines the denominator nuisance pa-
rameter point or prior over parameter points for the sampling. Default value: None

sample_only_from_closest_benchmark [bool, optional] If True, only weighted events
originally generated from the closest benchmarks are used. Default value: True.

folder [str or None] Path to the folder where the resulting samples should be saved (ndarrays
in .npy format). Default value: None.

filename [str or None] Filenames for the resulting samples. A prefix such as ‘x’ or ‘theta0’
as well as the extension ‘.npy’ will be added automatically. Default value: None.

additional_thetas [list of tuple or None] list of tuples (type, value) that defines additional
theta points at which ratio and score are evaluated, and which are then used to create addi-
tional training data points. These can be efficiently used only in the “doubly parameterized”
setup where a likelihood ratio estimator models the dependence of the likelihood ratio on
both the numerator and denominator hypothesis. Pass the output of the helper functions
constant_benchmark_theta(), multiple_benchmark_thetas(), constant_morphing_theta(),
multiple_morphing_thetas(), or random_morphing_thetas(). Default value: None.

nuisance_score [bool or “auto”, optional] If True, the score with respect to the nuisance
parameters (at the default position) will also be calculated. If False, only the score with
respect to the physics parameters is calculated. For “auto”, the nuisance score will be
calculated if a nuisance setup is defined. Default: True.

test_split [float or None, optional] Fraction of events reserved for the evaluation sample (that
will not be used for any training samples). Default value: 0.2.

validation_split [float or None, optional] Fraction of events reserved for testing. Default
value: 0.2.

partition [{“train”, “test”, “validation”, “all”}, optional] Which event partition to use. De-
fault value: “train”.

n_processes [None or int, optional] If None or larger than 1, MadMiner will use multipro-
cessing to parallelize the sampling. In this case, n_workers sets the number of jobs running
in parallel, and None will use the number of CPUs. Default value: 1.

n_eff_forced [float, optional] If not None, MadMiner will require the relative weights of the
events to be smaller than 1/n_eff_forced and ignore other events. This can help to reduce
statistical effects caused by a small number of events with very large weights obtained by
the morphing procedure. Default value: None

double_precision [bool, optional] Use double floating-point precision. Default value: False

Returns

x [ndarray] Observables with shape (n_samples, n_observables). The same information is
saved as a file in the given folder.

theta0 [ndarray] Numerator parameter points with shape (n_samples, n_parameters). The
same information is saved as a file in the given folder.

theta1 [ndarray] Denominator parameter points with shape (n_samples, n_parameters). The
same information is saved as a file in the given folder.

15.4. madminer.sampling.sampleaugmenter module 119

MadMiner Documentation, Release 0.8.2

y [ndarray] Class label with shape (n_samples, n_parameters). y=0 (1) for events sample
from the numerator (denominator) hypothesis. The same information is saved as a file in
the given folder.

r_xz [ndarray] Joint likelihood ratio with shape (n_samples,). The same information is saved
as a file in the given folder.

t_xz [ndarray] Joint score evaluated at theta0 with shape (n_samples, n_parameters). The
same information is saved as a file in the given folder.

effective_n_samples [int] Effective number of samples, defined as
1/max(event_probabilities), where event_probabilities are the fractions of the cross
section carried by each event.

sample_train_plain(theta, n_samples, nu=None, sample_only_from_closest_benchmark=True,
folder=None, filename=None, test_split=0.2, validation_split=0.2, partition='train',
n_processes=1, n_eff_forced=None, double_precision=False)

Extracts plain training samples x ~ p(x|theta) without any augmented data. This can be use for standard
inference methods such as ABC, histograms of observables, or neural density estimation techniques. It can
also be used to create validation or calibration samples.

Parameters

theta [tuple] Tuple (type, value) that defines the parameter point or prior over parameter
points for the sampling. Pass the output of the functions constant_benchmark_theta(),
multiple_benchmark_thetas(), constant_morphing_theta(), multiple_morphing_thetas(),
or random_morphing_thetas().

n_samples [int] Total number of events to be drawn.

nu [None or tuple, optional] Tuple (type, value) that defines the nuisance parameter point or
prior over parameter points for the sampling. Default value: None

sample_only_from_closest_benchmark [bool, optional] If True, only weighted events
originally generated from the closest benchmarks are used. Default value: True.

folder [str or None] Path to the folder where the resulting samples should be saved (ndarrays
in .npy format). Default value: None.

filename [str or None] Filenames for the resulting samples. A prefix such as ‘x’ or ‘theta0’
as well as the extension ‘.npy’ will be added automatically. Default value: None.

test_split [float or None, optional] Fraction of events reserved for the evaluation sample (that
will not be used for any training samples). Default value: 0.2.

validation_split [float or None, optional] Fraction of events reserved for testing. Default
value: 0.2.

partition [{“train”, “test”, “validation”, “all”}, optional] Which event partition to use. De-
fault value: “train”.

n_processes [None or int, optional] If None or larger than 1, MadMiner will use multipro-
cessing to parallelize the sampling. In this case, n_workers sets the number of jobs running
in parallel, and None will use the number of CPUs. Default value: 1.

n_eff_forced [float, optional] If not None, MadMiner will require the relative weights of the
events to be smaller than 1/n_eff_forced and ignore other events. This can help to reduce
statistical effects caused by a small number of events with very large weights obtained by
the morphing procedure. Default value: None

double_precision [bool, optional] Use double floating-point precision. Default value: False.

Returns

120 Chapter 15. madminer.sampling package

MadMiner Documentation, Release 0.8.2

x [ndarray] Observables with shape (n_samples, n_observables). The same information is
saved as a file in the given folder.

theta [ndarray] Parameter points used for sampling with shape (n_samples, n_parameters).
The same information is saved as a file in the given folder.

effective_n_samples [int] Effective number of samples, defined as
1/max(event_probabilities), where event_probabilities are the fractions of the cross
section carried by each event.

sample_train_ratio(theta0, theta1, n_samples, nu0=None, nu1=None,
sample_only_from_closest_benchmark=True, folder=None, filename=None,
nuisance_score='auto', test_split=0.2, validation_split=0.2, partition='train',
n_processes=1, return_individual_n_effective=False, n_eff_forced=None,
double_precision=False)

Extracts training samples x ~ p(x|theta0) and x ~ p(x|theta1) together with the class label y, the joint like-
lihood ratio r(x,z|theta0, theta1), and, if morphing is set up, the joint score t(x,z|theta0). This information
can be used in inference methods such as CARL, ROLR, CASCAL, and RASCAL.

Parameters

theta0 [tuple] Tuple (type, value) that defines the numerator parameter point or prior
over parameter points for the sampling. Pass the output of the functions con-
stant_benchmark_theta(), multiple_benchmark_thetas(), constant_morphing_theta(), mul-
tiple_morphing_thetas(), or random_morphing_thetas().

theta1 [tuple] Tuple (type, value) that defines the denominator parameter point or prior
over parameter points for the sampling. Pass the output of the functions con-
stant_benchmark_theta(), multiple_benchmark_thetas(), constant_morphing_theta(), mul-
tiple_morphing_thetas(), or random_morphing_thetas().

n_samples [int] Total number of events to be drawn.

nu0 [None or tuple, optional] Tuple (type, value) that defines the numerator nuisance param-
eter point or prior over parameter points for the sampling. Default value: None

nu1 [None or tuple, optional] Tuple (type, value) that defines the denominator nuisance pa-
rameter point or prior over parameter points for the sampling. Default value: None

sample_only_from_closest_benchmark [bool, optional] If True, only weighted events
originally generated from the closest benchmarks are used. Default value: True.

folder [str or None] Path to the folder where the resulting samples should be saved (ndarrays
in .npy format). Default value: None.

filename [str or None] Filenames for the resulting samples. A prefix such as ‘x’ or ‘theta0’
as well as the extension ‘.npy’ will be added automatically. Default value: None.

nuisance_score [bool or “auto”, optional] If True, the score with respect to the nuisance
parameters (at the default position) will also be calculated. If False, only the score with
respect to the physics parameters is calculated. For “auto”, the nuisance score will be
calculated if a nuisance setup is defined. Default: True.

test_split [float or None, optional] Fraction of events reserved for the evaluation sample (that
will not be used for any training samples). Default value: 0.2.

validation_split [float or None, optional] Fraction of events reserved for testing. Default
value: 0.2.

partition [{“train”, “test”, “validation”, “all”}, optional] Which event partition to use. De-
fault value: “train”.

15.4. madminer.sampling.sampleaugmenter module 121

MadMiner Documentation, Release 0.8.2

n_processes [None or int, optional] If None or larger than 1, MadMiner will use multipro-
cessing to parallelize the sampling. In this case, n_workers sets the number of jobs running
in parallel, and None will use the number of CPUs. Default value: 1.

return_individual_n_effective [bool, optional] Returns number of effective samples for
each set individually. Default value: False.

n_eff_forced [float, optional] If not None, MadMiner will require the relative weights of the
events to be smaller than 1/n_eff_forced and ignore other events. This can help to reduce
statistical effects caused by a small number of events with very large weights obtained by
the morphing procedure. Default value: None

double_precision [bool, optional] Use double floating-point precision. Default value: False

Returns

x [ndarray] Observables with shape (n_samples, n_observables). The same information is
saved as a file in the given folder.

theta0 [ndarray] Numerator parameter points with shape (n_samples, n_parameters). The
same information is saved as a file in the given folder.

theta1 [ndarray] Denominator parameter points with shape (n_samples, n_parameters). The
same information is saved as a file in the given folder.

y [ndarray] Class label with shape (n_samples, n_parameters). y=0 (1) for events sample
from the numerator (denominator) hypothesis. The same information is saved as a file in
the given folder.

r_xz [ndarray] Joint likelihood ratio with shape (n_samples,). The same information is saved
as a file in the given folder.

t_xz [ndarray or None] If morphing is set up, the joint score evaluated at theta0 with shape
(n_samples, n_parameters). The same information is saved as a file in the given folder. If
morphing is not set up, None is returned (and no file is saved).

effective_n_samples [int] Effective number of samples, defined as
1/max(event_probabilities), where event_probabilities are the fractions of the cross
section carried by each event.

15.5 Module contents

122 Chapter 15. madminer.sampling package

CHAPTER

SIXTEEN

INDICES AND TABLES

• genindex

• modindex

• search

123

MadMiner Documentation, Release 0.8.2

124 Chapter 16. Indices and tables

PYTHON MODULE INDEX

m
madminer.analysis, 18
madminer.analysis.dataanalyzer, 15
madminer.core, 26
madminer.core.madminer, 19
madminer.delphes, 32
madminer.delphes.delphes_reader, 27
madminer.fisherinformation, 47
madminer.fisherinformation.geometry, 33
madminer.fisherinformation.information, 35
madminer.fisherinformation.manipulate, 46
madminer.lhe, 55
madminer.lhe.lhe_reader, 49
madminer.likelihood, 63
madminer.likelihood.base, 57
madminer.likelihood.histo, 58
madminer.likelihood.manipulate, 60
madminer.likelihood.neural, 62
madminer.limits, 72
madminer.limits.asymptotic_limits, 65
madminer.ml, 100
madminer.ml.base, 73
madminer.ml.double_parameterized_ratio, 76
madminer.ml.ensemble, 80
madminer.ml.likelihood, 84
madminer.ml.lookup, 88
madminer.ml.morphing_aware, 88
madminer.ml.parameterized_ratio, 92
madminer.ml.score, 96
madminer.plotting, 109
madminer.plotting.distributions, 101
madminer.plotting.fisherinformation, 103
madminer.plotting.limits, 105
madminer.plotting.morphing, 106
madminer.plotting.uncertainties, 107
madminer.sampling, 122
madminer.sampling.combine, 111
madminer.sampling.parameters, 111
madminer.sampling.sampleaugmenter, 113

125

MadMiner Documentation, Release 0.8.2

126 Python Module Index

INDEX

A
add_benchmark() (mad-

miner.core.madminer.MadMiner method),
20

add_cut() (madminer.delphes.delphes_reader.DelphesReader
method), 28

add_cut() (madminer.lhe.lhe_reader.LHEReader
method), 50

add_default_observables() (mad-
miner.delphes.delphes_reader.DelphesReader
method), 28

add_default_observables() (mad-
miner.lhe.lhe_reader.LHEReader method),
50

add_efficiency() (mad-
miner.lhe.lhe_reader.LHEReader method),
51

add_estimator() (madminer.ml.ensemble.Ensemble
method), 81

add_observable() (mad-
miner.delphes.delphes_reader.DelphesReader
method), 29

add_observable() (mad-
miner.lhe.lhe_reader.LHEReader method),
51

add_observable_from_function() (mad-
miner.delphes.delphes_reader.DelphesReader
method), 29

add_observable_from_function() (mad-
miner.lhe.lhe_reader.LHEReader method),
52

add_parameter() (mad-
miner.core.madminer.MadMiner method),
20

add_sample() (madminer.delphes.delphes_reader.DelphesReader
method), 30

add_sample() (madminer.lhe.lhe_reader.LHEReader
method), 52

add_systematics() (mad-
miner.core.madminer.MadMiner method),
21

analyse_delphes_samples() (mad-

miner.delphes.delphes_reader.DelphesReader
method), 30

analyse_samples() (mad-
miner.lhe.lhe_reader.LHEReader method),
53

asymptotic_p_value() (mad-
miner.limits.asymptotic_limits.AsymptoticLimits
method), 66

AsymptoticLimits (class in mad-
miner.limits.asymptotic_limits), 65

B
BaseLikelihood (class in madminer.likelihood.base),

57
benchmark() (in module mad-

miner.sampling.parameters), 111
benchmarks() (in module mad-

miner.sampling.parameters), 112

C
calculate_fisher_information() (mad-

miner.ml.base.Estimator method), 75
calculate_fisher_information() (mad-

miner.ml.double_parameterized_ratio.DoubleParameterizedRatioEstimator
method), 77

calculate_fisher_information() (mad-
miner.ml.ensemble.Ensemble method), 81

calculate_fisher_information() (mad-
miner.ml.likelihood.LikelihoodEstimator
method), 85

calculate_fisher_information() (mad-
miner.ml.parameterized_ratio.ParameterizedRatioEstimator
method), 93

calculate_fisher_information() (mad-
miner.ml.score.ScoreEstimator method),
97

calculate_fisher_information_full_detector()
(madminer.fisherinformation.information.FisherInformation
method), 37

calculate_fisher_information_full_truth()
(madminer.fisherinformation.information.FisherInformation
method), 38

127

MadMiner Documentation, Release 0.8.2

calculate_fisher_information_hist1d() (mad-
miner.fisherinformation.information.FisherInformation
method), 38

calculate_fisher_information_hist2d() (mad-
miner.fisherinformation.information.FisherInformation
method), 39

calculate_fisher_information_nuisance_constraints()
(madminer.fisherinformation.information.FisherInformation
method), 40

calculate_fisher_information_rate() (mad-
miner.fisherinformation.information.FisherInformation
method), 40

combine_and_shuffle() (in module mad-
miner.sampling.combine), 111

ConditionalEstimator (class in madminer.ml.base),
73

create_expected_negative_log_likelihood()
(madminer.likelihood.base.BaseLikelihood
method), 57

create_expected_negative_log_likelihood()
(madminer.likelihood.histo.HistoLikelihood
method), 58

create_expected_negative_log_likelihood()
(madminer.likelihood.neural.NeuralLikelihood
method), 62

create_negative_log_likelihood() (mad-
miner.likelihood.base.BaseLikelihood method),
57

create_negative_log_likelihood() (mad-
miner.likelihood.histo.HistoLikelihood
method), 59

create_negative_log_likelihood() (mad-
miner.likelihood.neural.NeuralLikelihood
method), 63

cross_sections() (mad-
miner.sampling.sampleaugmenter.SampleAugmenter
method), 114

D
DataAnalyzer (class in mad-

miner.analysis.dataanalyzer), 15
DelphesReader (class in mad-

miner.delphes.delphes_reader), 27
distance_contours() (mad-

miner.fisherinformation.geometry.InformationGeometry
method), 33

DoubleParameterizedRatioEstimator (class in
madminer.ml.double_parameterized_ratio), 76

E
Ensemble (class in madminer.ml.ensemble), 80
Estimator (class in madminer.ml.base), 74
evaluate() (madminer.ml.base.Estimator method), 75

evaluate() (madminer.ml.double_parameterized_ratio.DoubleParameterizedRatioEstimator
method), 77

evaluate() (madminer.ml.likelihood.LikelihoodEstimator
method), 85

evaluate() (madminer.ml.parameterized_ratio.ParameterizedRatioEstimator
method), 93

evaluate() (madminer.ml.score.ScoreEstimator
method), 97

evaluate_log_likelihood() (mad-
miner.ml.base.Estimator method), 75

evaluate_log_likelihood() (mad-
miner.ml.double_parameterized_ratio.DoubleParameterizedRatioEstimator
method), 77

evaluate_log_likelihood() (mad-
miner.ml.ensemble.Ensemble method), 82

evaluate_log_likelihood() (mad-
miner.ml.likelihood.LikelihoodEstimator
method), 86

evaluate_log_likelihood() (mad-
miner.ml.parameterized_ratio.ParameterizedRatioEstimator
method), 94

evaluate_log_likelihood() (mad-
miner.ml.score.ScoreEstimator method),
97

evaluate_log_likelihood_ratio() (mad-
miner.ml.base.Estimator method), 75

evaluate_log_likelihood_ratio() (mad-
miner.ml.double_parameterized_ratio.DoubleParameterizedRatioEstimator
method), 77

evaluate_log_likelihood_ratio() (mad-
miner.ml.ensemble.Ensemble method), 83

evaluate_log_likelihood_ratio() (mad-
miner.ml.likelihood.LikelihoodEstimator
method), 86

evaluate_log_likelihood_ratio() (mad-
miner.ml.parameterized_ratio.ParameterizedRatioEstimator
method), 94

evaluate_log_likelihood_ratio() (mad-
miner.ml.score.ScoreEstimator method),
97

evaluate_log_likelihood_ratio_torch() (mad-
miner.ml.parameterized_ratio.ParameterizedRatioEstimator
method), 94

evaluate_score() (madminer.ml.base.Estimator
method), 75

evaluate_score() (mad-
miner.ml.double_parameterized_ratio.DoubleParameterizedRatioEstimator
method), 78

evaluate_score() (madminer.ml.ensemble.Ensemble
method), 83

evaluate_score() (mad-
miner.ml.likelihood.LikelihoodEstimator
method), 86

evaluate_score() (mad-

128 Index

MadMiner Documentation, Release 0.8.2

miner.ml.parameterized_ratio.ParameterizedRatioEstimator
method), 94

evaluate_score() (madminer.ml.score.ScoreEstimator
method), 98

event_loader() (mad-
miner.analysis.dataanalyzer.DataAnalyzer
method), 15

expected_limits() (mad-
miner.limits.asymptotic_limits.AsymptoticLimits
method), 66

F
find_trajectory() (mad-

miner.fisherinformation.geometry.InformationGeometry
method), 34

finite_differences() (mad-
miner.core.madminer.MadMiner method),
21

FisherInformation (class in mad-
miner.fisherinformation.information), 35

fix_params() (in module mad-
miner.likelihood.manipulate), 60

full_information() (mad-
miner.fisherinformation.information.FisherInformation
method), 40

H
histo_information() (mad-

miner.fisherinformation.information.FisherInformation
method), 41

histo_information_2d() (mad-
miner.fisherinformation.information.FisherInformation
method), 42

histogram_of_fisher_information() (mad-
miner.fisherinformation.information.FisherInformation
method), 43

histogram_of_information() (mad-
miner.fisherinformation.information.FisherInformation
method), 43

histogram_of_sigma_dsigma() (mad-
miner.fisherinformation.information.FisherInformation
method), 44

HistoLikelihood (class in madminer.likelihood.histo),
58

I
iid_nuisance_parameters() (in module mad-

miner.sampling.parameters), 112
information_from_formula() (mad-

miner.fisherinformation.geometry.InformationGeometry
method), 34

information_from_grid() (mad-
miner.fisherinformation.geometry.InformationGeometry
method), 35

InformationGeometry (class in mad-
miner.fisherinformation.geometry), 33

initialize_input_transform() (mad-
miner.ml.base.Estimator method), 75

initialize_parameter_transform() (mad-
miner.ml.base.ConditionalEstimator method),
73

L
LHEReader (class in madminer.lhe.lhe_reader), 49
LikelihoodEstimator (class in mad-

miner.ml.likelihood), 84
load() (madminer.core.madminer.MadMiner method),

21
load() (madminer.ml.base.ConditionalEstimator

method), 73
load() (madminer.ml.base.Estimator method), 75
load() (madminer.ml.ensemble.Ensemble method), 83
load() (madminer.ml.score.ScoreEstimator method), 98
load_estimator() (in module madminer.ml.lookup), 88

M
MadMiner (class in madminer.core.madminer), 19
madminer.analysis

module, 18
madminer.analysis.dataanalyzer

module, 15
madminer.core

module, 26
madminer.core.madminer

module, 19
madminer.delphes

module, 32
madminer.delphes.delphes_reader

module, 27
madminer.fisherinformation

module, 47
madminer.fisherinformation.geometry

module, 33
madminer.fisherinformation.information

module, 35
madminer.fisherinformation.manipulate

module, 46
madminer.lhe

module, 55
madminer.lhe.lhe_reader

module, 49
madminer.likelihood

module, 63
madminer.likelihood.base

module, 57
madminer.likelihood.histo

module, 58
madminer.likelihood.manipulate

Index 129

MadMiner Documentation, Release 0.8.2

module, 60
madminer.likelihood.neural

module, 62
madminer.limits

module, 72
madminer.limits.asymptotic_limits

module, 65
madminer.ml

module, 100
madminer.ml.base

module, 73
madminer.ml.double_parameterized_ratio

module, 76
madminer.ml.ensemble

module, 80
madminer.ml.likelihood

module, 84
madminer.ml.lookup

module, 88
madminer.ml.morphing_aware

module, 88
madminer.ml.parameterized_ratio

module, 92
madminer.ml.score

module, 96
madminer.plotting

module, 109
madminer.plotting.distributions

module, 101
madminer.plotting.fisherinformation

module, 103
madminer.plotting.limits

module, 105
madminer.plotting.morphing

module, 106
madminer.plotting.uncertainties

module, 107
madminer.sampling

module, 122
madminer.sampling.combine

module, 111
madminer.sampling.parameters

module, 111
madminer.sampling.sampleaugmenter

module, 113
module

madminer.analysis, 18
madminer.analysis.dataanalyzer, 15
madminer.core, 26
madminer.core.madminer, 19
madminer.delphes, 32
madminer.delphes.delphes_reader, 27
madminer.fisherinformation, 47
madminer.fisherinformation.geometry, 33

madminer.fisherinformation.information,
35

madminer.fisherinformation.manipulate, 46
madminer.lhe, 55
madminer.lhe.lhe_reader, 49
madminer.likelihood, 63
madminer.likelihood.base, 57
madminer.likelihood.histo, 58
madminer.likelihood.manipulate, 60
madminer.likelihood.neural, 62
madminer.limits, 72
madminer.limits.asymptotic_limits, 65
madminer.ml, 100
madminer.ml.base, 73
madminer.ml.double_parameterized_ratio,

76
madminer.ml.ensemble, 80
madminer.ml.likelihood, 84
madminer.ml.lookup, 88
madminer.ml.morphing_aware, 88
madminer.ml.parameterized_ratio, 92
madminer.ml.score, 96
madminer.plotting, 109
madminer.plotting.distributions, 101
madminer.plotting.fisherinformation, 103
madminer.plotting.limits, 105
madminer.plotting.morphing, 106
madminer.plotting.uncertainties, 107
madminer.sampling, 122
madminer.sampling.combine, 111
madminer.sampling.parameters, 111
madminer.sampling.sampleaugmenter, 113

morphing_point() (in module mad-
miner.sampling.parameters), 112

morphing_points() (in module mad-
miner.sampling.parameters), 112

MorphingAwareRatioEstimator (class in mad-
miner.ml.morphing_aware), 88

N
NeuralLikelihood (class in mad-

miner.likelihood.neural), 62
nominal_nuisance_parameters() (in module mad-

miner.sampling.parameters), 112
nuisance_constraint_information() (mad-

miner.fisherinformation.information.FisherInformation
method), 45

O
observed_limits() (mad-

miner.limits.asymptotic_limits.AsymptoticLimits
method), 69

130 Index

MadMiner Documentation, Release 0.8.2

P
ParameterizedRatioEstimator (class in mad-

miner.ml.parameterized_ratio), 92
plot_1d_morphing_basis() (in module mad-

miner.plotting.morphing), 106
plot_2d_morphing_basis() (in module mad-

miner.plotting.morphing), 106
plot_distribution_of_information() (in module

madminer.plotting.fisherinformation), 103
plot_distributions() (in module mad-

miner.plotting.distributions), 101
plot_fisher_information_contours_2d() (in mod-

ule madminer.plotting.fisherinformation), 103
plot_fisherinfo_barplot() (in module mad-

miner.plotting.fisherinformation), 105
plot_histograms() (in module mad-

miner.plotting.distributions), 102
plot_nd_morphing_basis_scatter() (in module

madminer.plotting.morphing), 107
plot_nd_morphing_basis_slices() (in module mad-

miner.plotting.morphing), 107
plot_pvalue_limits() (in module mad-

miner.plotting.limits), 105
plot_systematics() (in module mad-

miner.plotting.uncertainties), 107
plot_uncertainty() (in module mad-

miner.plotting.uncertainties), 108
profile_information() (in module mad-

miner.fisherinformation.manipulate), 46
profile_log_likelihood() (in module mad-

miner.likelihood.manipulate), 60
project_information() (in module mad-

miner.fisherinformation.manipulate), 46
project_log_likelihood() (in module mad-

miner.likelihood.manipulate), 61

Q
QuadraticMorphingAwareRatioEstimator (class in

madminer.ml.morphing_aware), 90

R
random_morphing_points() (in module mad-

miner.sampling.parameters), 112
rate_information() (mad-

miner.fisherinformation.information.FisherInformation
method), 45

reset_cuts() (madminer.delphes.delphes_reader.DelphesReader
method), 31

reset_cuts() (madminer.lhe.lhe_reader.LHEReader
method), 53

reset_efficiencies() (mad-
miner.lhe.lhe_reader.LHEReader method),
53

reset_observables() (mad-
miner.delphes.delphes_reader.DelphesReader
method), 31

reset_observables() (mad-
miner.lhe.lhe_reader.LHEReader method),
53

reset_systematics() (mad-
miner.core.madminer.MadMiner method),
22

reweight_existing_sample() (mad-
miner.core.madminer.MadMiner method),
22

run() (madminer.core.madminer.MadMiner method), 22
run_delphes() (mad-

miner.delphes.delphes_reader.DelphesReader
method), 31

run_multiple() (madminer.core.madminer.MadMiner
method), 23

S
sample_test() (mad-

miner.sampling.sampleaugmenter.SampleAugmenter
method), 115

sample_train_density() (mad-
miner.sampling.sampleaugmenter.SampleAugmenter
method), 116

sample_train_local() (mad-
miner.sampling.sampleaugmenter.SampleAugmenter
method), 117

sample_train_more_ratios() (mad-
miner.sampling.sampleaugmenter.SampleAugmenter
method), 118

sample_train_plain() (mad-
miner.sampling.sampleaugmenter.SampleAugmenter
method), 120

sample_train_ratio() (mad-
miner.sampling.sampleaugmenter.SampleAugmenter
method), 121

SampleAugmenter (class in mad-
miner.sampling.sampleaugmenter), 113

save() (madminer.core.madminer.MadMiner method),
25

save() (madminer.delphes.delphes_reader.DelphesReader
method), 31

save() (madminer.lhe.lhe_reader.LHEReader method),
53

save() (madminer.ml.base.ConditionalEstimator
method), 74

save() (madminer.ml.base.Estimator method), 75
save() (madminer.ml.ensemble.Ensemble method), 83
save() (madminer.ml.score.ScoreEstimator method), 98
ScoreEstimator (class in madminer.ml.score), 96
set_acceptance() (mad-

miner.delphes.delphes_reader.DelphesReader

Index 131

MadMiner Documentation, Release 0.8.2

method), 32
set_benchmarks() (mad-

miner.core.madminer.MadMiner method),
25

set_met_noise() (mad-
miner.lhe.lhe_reader.LHEReader method),
53

set_morphing() (madminer.core.madminer.MadMiner
method), 25

set_nuisance() (madminer.ml.score.ScoreEstimator
method), 98

set_parameters() (mad-
miner.core.madminer.MadMiner method),
26

set_smearing() (madminer.lhe.lhe_reader.LHEReader
method), 54

T
TheresAGoodReasonThisDoesntWork, 76
train() (madminer.ml.base.Estimator method), 76
train() (madminer.ml.double_parameterized_ratio.DoubleParameterizedRatioEstimator

method), 78
train() (madminer.ml.likelihood.LikelihoodEstimator

method), 86
train() (madminer.ml.morphing_aware.MorphingAwareRatioEstimator

method), 89
train() (madminer.ml.morphing_aware.QuadraticMorphingAwareRatioEstimator

method), 91
train() (madminer.ml.parameterized_ratio.ParameterizedRatioEstimator

method), 95
train() (madminer.ml.score.ScoreEstimator method),

98
train_all() (madminer.ml.ensemble.Ensemble

method), 84
train_one() (madminer.ml.ensemble.Ensemble

method), 84
truth_information() (mad-

miner.fisherinformation.information.FisherInformation
method), 45

W
weighted_events() (mad-

miner.analysis.dataanalyzer.DataAnalyzer
method), 16

X
xsec_gradients() (mad-

miner.analysis.dataanalyzer.DataAnalyzer
method), 16

xsecs() (madminer.analysis.dataanalyzer.DataAnalyzer
method), 17

132 Index

	Introduction to MadMiner
	Getting started
	Simulator dependencies
	Install MadMiner
	Docker image

	Using MadMiner
	Paper
	Tutorials
	Typical workflow
	Technical documentation
	Support

	Trouble-shooting
	Event generation crashing
	Key errors when reading LHE files
	Zero events after reading LHE or Delphes file
	Neural network output does not make sense

	References
	Citations
	Acknowledgements

	madminer.analysis package
	Submodules
	madminer.analysis.dataanalyzer module
	Module contents

	madminer.core package
	Submodules
	madminer.core.madminer module
	Module contents

	madminer.delphes package
	Submodules
	madminer.delphes.delphes_reader module
	Module contents

	madminer.fisherinformation package
	Submodules
	madminer.fisherinformation.geometry module
	madminer.fisherinformation.information module
	madminer.fisherinformation.manipulate module
	Module contents

	madminer.lhe package
	Submodules
	madminer.lhe.lhe_reader module
	Module contents

	madminer.likelihood package
	Submodules
	madminer.likelihood.base module
	madminer.likelihood.histo module
	madminer.likelihood.manipulate module
	madminer.likelihood.neural module
	Module contents

	madminer.limits package
	Submodules
	madminer.limits.asymptotic_limits module
	Module contents

	madminer.ml package
	Submodules
	madminer.ml.base module
	madminer.ml.double_parameterized_ratio module
	madminer.ml.ensemble module
	madminer.ml.likelihood module
	madminer.ml.lookup module
	madminer.ml.morphing_aware module
	madminer.ml.parameterized_ratio module
	madminer.ml.score module
	Module contents

	madminer.plotting package
	Submodules
	madminer.plotting.distributions module
	madminer.plotting.fisherinformation module
	madminer.plotting.limits module
	madminer.plotting.morphing module
	madminer.plotting.uncertainties module
	Module contents

	madminer.sampling package
	Submodules
	madminer.sampling.combine module
	madminer.sampling.parameters module
	madminer.sampling.sampleaugmenter module
	Module contents

	Indices and tables
	Python Module Index
	Index

