
MadMiner Documentation
Release 0.2.3

Johann Brehmer, Kyle Cranmer, and Felix Kling

Feb 22, 2019

Contents:

1 madminer.core module 1

2 madminer.delphes module 9

3 madminer.fisherinformation module 15

4 madminer.lhe module 23

5 madminer.ml module 29

6 madminer.morphing module 41

7 madminer.plotting module 47

8 madminer.sampling module 53

9 Indices and tables 63

Python Module Index 65

i

ii

CHAPTER 1

madminer.core module

class madminer.core.MadMiner(debug=False)
Bases: object

The central class to manage parameter spaces, benchmarks, and the generation of events through MadGraph and
Pythia.

An instance of this class is the starting point of most MadMiner applications. It is typically used in four steps:

• Defining the parameter space through MadMiner.add_parameter

• Defining the benchmarks, i.e. the points at which the squared matrix elements will be evalu-
ated in MadGraph, with MadMiner.add_benchmark() or, if operator morphing is used, with Mad-
Miner.set_benchmarks_from_morphing()

• Saving this setup with MadMiner.save() (it can be loaded in a new instance with MadMiner.load())

• Running MadGraph and Pythia with the appropriate settings with MadMiner.run() or Mad-
Miner.run_multiple() (the latter allows the user to combine runs from multiple run cards and sampling
points)

Please see the tutorial for a hands-on introduction to its methods.

Parameters

debug [bool, optional] If True, additional detailed debugging output is printed. Default value:
False.

Methods

add_benchmark(parameter_values[, bench-
mark_name])

Manually adds an individual benchmark, that is, a
parameter point that will be evaluated by MadGraph.

add_parameter(lha_block, lha_id[, . . .]) Adds an individual parameter.
load(filename[, disable_morphing]) Loads MadMiner setup from a file.

Continued on next page

1

MadMiner Documentation, Release 0.2.3

Table 1 – continued from previous page
run(mg_directory, proc_card_file, . . . [, . . .]) High-level function that creates the the MadGraph

process, all required cards, and prepares or runs the
event generation for one combination of cards.

run_multiple(mg_directory, proc_card_file,
. . .)

High-level function that creates the the Mad-
Graph process, all required cards, and prepares or
runs the event generation for multiple combina-
tions of run_cards or importance samplings (sam-
ple_benchmarks).

save(filename) Saves MadMiner setup into a file.
set_benchmarks([benchmarks]) Manually sets all benchmarks, that is, parameter

points that will be evaluated by MadGraph.
set_morphing([max_overall_power, n_bases,
. . .])

Sets up the morphing environment.

set_parameters([parameters]) Manually sets all parameters, overwriting previously
added parameters.

set_systematics([scale_variation, scales, . . .]) Prepares the simulation of the effect of different
nuisance parameters, including scale variations and
PDF changes.

add_benchmark(parameter_values, benchmark_name=None)
Manually adds an individual benchmark, that is, a parameter point that will be evaluated by MadGraph.

If this command is called before

Parameters

parameter_values [dict] The keys of this dict should be the parameter names and the values
the corresponding parameter values.

benchmark_name [str or None, optional] Name of benchmark. If None, a default name is
used. Default value: None.

Returns

None

Raises

RuntimeError If a benchmark with the same name already exists, if parameter_values is
not a dict, or if a key of parameter_values does not correspond to a defined parameter.

add_parameter(lha_block, lha_id, parameter_name=None, param_card_transform=None, morph-
ing_max_power=2, parameter_range=(0.0, 1.0))

Adds an individual parameter.

Parameters

lha_block [str] The name of the LHA block as used in the param_card. Case-sensitive.

lha_id [int] The LHA id as used in the param_card.

parameter_name [str or None] An internal name for the parameter. If None, a the default
‘benchmark_i’ is used.

morphing_max_power [int or tuple of int] The maximal power with which this parameter
contributes to the squared matrix element of the process of interest. If a tuple is given,
gives this maximal power for each of several operator configurations. Typically at tree
level, this maximal number is 2 for parameters that affect one vertex (e.g. only production
or only decay of a particle), and 4 for parameters that affect two vertices (e.g. production
and decay). Default value: 2.

2 Chapter 1. madminer.core module

MadMiner Documentation, Release 0.2.3

param_card_transform [None or str] Represents a one-parameter function mapping the
parameter (“theta”) to the value that should be written in the parameter cards. This str is
parsed by Python’s eval() function, and “theta” is parsed as the parameter value. Default
value: None.

parameter_range [tuple of float] The range of parameter values of primary interest. Only
affects the basis optimization. Default value: (0., 1.).

Returns

None

load(filename, disable_morphing=False)
Loads MadMiner setup from a file. All parameters, benchmarks, and morphing settings are overwritten.
See save for more details.

Parameters

filename [str] Path to the MadMiner file.

disable_morphing [bool, optional] If True, the morphing setup is not loaded from the file.
Default value: False.

Returns

None

run(mg_directory, proc_card_file, param_card_template_file, run_card_file=None,
mg_process_directory=None, pythia8_card_file=None, sample_benchmark=None,
is_background=False, only_prepare_script=False, ufo_model_directory=None,
log_directory=None, temp_directory=None, initial_command=None)
High-level function that creates the the MadGraph process, all required cards, and prepares or runs the
event generation for one combination of cards.

If only_prepare_scripts=True, the event generation is not run directly, but a bash script is created in <pro-
cess_folder>/madminer/run.sh that will start the event generation with the correct settings.

High-level function that creates the the MadGraph process, all required cards, and prepares or runs the
event generation for multiple combinations of run_cards or importance samplings (sample_benchmarks).

If only_prepare_scripts=True, the event generation is not run directly, but a bash script is created in <pro-
cess_folder>/madminer/run.sh that will start the event generation with the correct settings.

Parameters

mg_directory [str] Path to the MadGraph 5 base directory.

proc_card_file [str] Path to the process card that tells MadGraph how to generate the pro-
cess.

param_card_template_file [str] Path to a param card that will be used as template to create
the appropriate param cards for these runs.

run_card_file [str] Paths to the MadGraph run card. If None, the default run_card is used.

mg_process_directory [str or None, optional] Path to the MG process directory. If None,
MadMiner uses ./MG_process. Default value: None.

pythia8_card_file [str or None, optional] Path to the MadGraph Pythia8 card. If None, the
card present in the process folder is used. Default value: None.

sample_benchmark [list of str or None, optional] Lists the names of benchmarks that
should be used to sample events. A different sampling does not change the expected
differential cross sections, but will change which regions of phase space have many events

3

MadMiner Documentation, Release 0.2.3

(small variance) or few events (high variance). If None, the benchmark added first is used.
Default value: None.

is_background [bool, optional] Should be True for background processes, i.e. process in
which the differential cross section does not depend on the parameters (i.e. is the same for
all benchmarks). In this case, no reweighting is run, which can substantially speed up the
event generation. Default value: False.

only_prepare_script [bool, optional] If True, the event generation is not started, but instead
a run.sh script is created in the process directory. Default value: False.

only_prepare_script [bool, optional] If True, MadGraph is not executed, but instead a
run.sh script is created in the process directory. Default value: False.

ufo_model_directory [str or None, optional] Path to an UFO model directory that should
be used, but is not yet installed in mg_directory/models. The model will be copied to the
MadGraph model directory before the process directory is generated. (Default value =
None.

log_directory [str or None, optional] Directory for log files with the MadGraph output. If
None, ./logs is used. Default value: None.

temp_directory [str or None, optional] Path to a temporary directory. If None, a system
default is used. Default value: None.

initial_command [str or None, optional] Initial shell commands that have to be executed
before MG is run (e.g. to load a virtual environment). Default value: None.

Returns

None

run_multiple(mg_directory, proc_card_file, param_card_template_file, run_card_files,
mg_process_directory=None, pythia8_card_file=None, sample_benchmarks=None,
is_background=False, only_prepare_script=False, ufo_model_directory=None,
log_directory=None, temp_directory=None, initial_command=None)

High-level function that creates the the MadGraph process, all required cards, and prepares or runs the
event generation for multiple combinations of run_cards or importance samplings (sample_benchmarks).

If only_prepare_scripts=True, the event generation is not run directly, but a bash script is created in <pro-
cess_folder>/madminer/run.sh that will start the event generation with the correct settings.

Parameters

mg_directory [str] Path to the MadGraph 5 base directory.

proc_card_file [str] Path to the process card that tells MadGraph how to generate the pro-
cess.

param_card_template_file [str] Path to a param card that will be used as template to create
the appropriate param cards for these runs.

run_card_files [list of str] Paths to the MadGraph run card.

mg_process_directory [str or None, optional] Path to the MG process directory. If None,
MadMiner uses ./MG_process. Default value: None.

pythia8_card_file [str, optional] Path to the MadGraph Pythia8 card. If None, the card
present in the process folder is used. Default value: None.

sample_benchmarks [list of str or None, optional] Lists the names of benchmarks that
should be used to sample events. A different sampling does not change the expected
differential cross sections, but will change which regions of phase space have many events

4 Chapter 1. madminer.core module

MadMiner Documentation, Release 0.2.3

(small variance) or few events (high variance). If None, a run is started for each of the
benchmarks, which should map out all regions of phase space well. Default value: None.

is_background [bool, optional] Should be True for background processes, i.e. process in
which the differential cross section does not depend on the parameters (i.e. is the same for
all benchmarks). In this case, no reweighting is run, which can substantially speed up the
event generation. Default value: False.

only_prepare_script [bool, optional] If True, the event generation is not started, but instead
a run.sh script is created in the process directory. Default value: False.

only_prepare_script [bool, optional] If True, MadGraph is not executed, but instead a
run.sh script is created in the process directory. Default value: False.

ufo_model_directory [str or None, optional] Path to an UFO model directory that should
be used, but is not yet installed in mg_directory/models. The model will be copied to the
MadGraph model directory before the process directory is generated. (Default value =
None)

log_directory [str or None, optional] Directory for log files with the MadGraph output. If
None, ./logs is used. Default value: None.

temp_directory [str or None, optional] Path to a temporary directory. If None, a system
default is used. Default value: None.

initial_command [str or None, optional] Initial shell commands that have to be executed
before MG is run (e.g. to load a virtual environment). Default value: None.

Returns

None

save(filename)
Saves MadMiner setup into a file.

The file format follows the HDF5 standard. The saved information includes:

• the parameter definitions,

• the benchmark points,

• the systematics setup (if defined), and

• the morphing setup (if defined).

This file is an important input to later stages in the analysis chain, including the processing of generated
events, extraction of training samples, and calculation of Fisher information matrices. In these downstream
tasks, additional information will be written to the MadMiner file, including the observations and event
weights.

Parameters

filename [str] Path to the MadMiner file.

Returns

None

set_benchmarks(benchmarks=None)
Manually sets all benchmarks, that is, parameter points that will be evaluated by MadGraph. Calling this
function overwrites all previously defined benchmarks.

Parameters

5

MadMiner Documentation, Release 0.2.3

benchmarks [dict or list or None, optional] Specifies all benchmarks. If None, all bench-
marks are reset. If dict, the keys are the benchmark names and the values are dicts of the
form {parameter_name:value}. If list, the entries are dicts {parameter_name:value} (and
the benchmark names are chosen automatically). Default value: None.

Returns

None

set_morphing(max_overall_power=4, n_bases=1, include_existing_benchmarks=True,
n_trials=100, n_test_thetas=100)

Sets up the morphing environment.

Sets benchmarks, i.e. parameter points that will be evaluated by MadGraph, for a morphing algorithm,
and calculates all information required for morphing. Morphing is a technique that allows MadMax to
infer the full probability distribution p(x_i | theta) for each simulated event x_i and any theta, not just the
benchmarks.

The morphing basis is optimized with respect to the expected mean squared morphing weights over the
parameter region of interest. If keep_existing_benchmarks=True, benchmarks defined previously will be
incorporated in the morphing basis and only the remaining basis points will be optimized.

Note that any subsequent call to set_benchmarks or add_benchmark will overwrite the morphing
setup. The correct order is therefore to manually define benchmarks first, using set_benchmarks
or add_benchmark, and then to create the morphing setup and complete the basis by calling
set_benchmarks_from_morphing(keep_existing_benchmarks=True).

Parameters

max_overall_power [int or tuple of int, optional] The maximal sum of powers of all pa-
rameters contributing to the squared matrix element. If a tuple is given, gives the maximal
sum of powers for each of several operator configurations (see add_parameter). Typically,
if parameters can affect the couplings at n vertices, this number is 2n. Default value: 4.

n_bases [int, optional] The number of morphing bases generated. If n_bases > 1, multiple
bases are combined, and the weights for each basis are reduced by a factor 1 / n_bases.
Currently only the default choice of 1 is fully implemented. Do not use any other value
for now. Default value: 1.

include_existing_benchmarks [bool, optional] If True, the previously defined benchmarks
are included in the morphing basis. In that case, the number of free parameters in the
optimization routine is reduced. If False, the existing benchmarks will still be simulated,
but are not part of the morphing routine. Default value: True.

n_trials [int, optional] Number of random basis configurations tested in the optimization
procedure. A larger number will increase the run time of the optimization, but lead to
better results. Default value: 100.

n_test_thetas [int, optional] Number of random parameter points used to evaluate the ex-
pected mean squared morphing weights. A larger number will increase the run time of the
optimization, but lead to better results. Default value: 100.

Returns

None

set_parameters(parameters=None)
Manually sets all parameters, overwriting previously added parameters.

Parameters

6 Chapter 1. madminer.core module

MadMiner Documentation, Release 0.2.3

parameters [dict or list or None, optional] If parameters is None, resets parameters. If
parameters is an dict, the keys should be str and give the parameter names, and the val-
ues are tuples of the form (LHA_block, LHA_ID, morphing_max_power, param_min,
param_max) or of the form (LHA_block, LHA_ID). If parameters is a list, the items should
be tuples of the form (LHA_block, LHA_ID). Default value: None.

Returns

None

set_systematics(scale_variation=None, scales=’together’, pdf_variation=None)
Prepares the simulation of the effect of different nuisance parameters, including scale variations and PDF
changes.

Parameters

scale_variation [None or tuple of float, optional] If not None, the regularization and / or
factorization scales are varied. A tuple like (0.5,1.,2.) specifies the factors with which they
are varied. Default value: None.

scales [{“together”, “independent”, “mur”, “muf”}, optional] Whether only the regulariza-
tion scale (“mur”), only the factorization scale (“muf”), both simultanously (“together”)
or both independently (“independent”) are varied. Default value: “together”.

pdf_variation [None or str, optional] If not None, the PDFs are varied. The option is passed
along to the –pdf option of MadGraph’s systematics module. See https://cp3.irmp.ucl.ac.
be/projects/madgraph/wiki/Systematics for a list. The option “CT10” would, as an exam-
ple, run over all the eigenvectors of the CTEQ10 set.

Returns

None

7

https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Systematics
https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Systematics

MadMiner Documentation, Release 0.2.3

8 Chapter 1. madminer.core module

CHAPTER 2

madminer.delphes module

class madminer.delphes.DelphesProcessor(filename)
Bases: object

Detector simulation with Delphes and simple calculation of observables.

After setting up the parameter space and benchmarks and running MadGraph and Pythia, all of which is or-
ganized in the madminer.core.MadMiner class, the next steps are the simulation of detector effects and the
calculation of observables. Different tools can be used for these tasks, please feel free to implement the detector
simulation and analysis routine of your choice.

This class provides an example implementation based on Delphes. Its workflow consists of the following steps:

• Initializing the class with the filename of a MadMiner HDF5 file (the output of mad-
miner.core.MadMiner.save())

• Adding one or multiple event samples produced by MadGraph and Pythia in DelphesProces-
sor.add_sample().

• Running Delphes on the samples that require it through DelphesProcessor.run_delphes().

• Optionally, acceptance cuts for all visible particles can be defined with DelphesProces-
sor.set_acceptance().

• Defining observables through DelphesProcessor.add_observable() or DelphesProces-
sor.add_observable_from_function(). A simple set of default observables is provided in Delphes-
Processor.add_default_observables()

• Optionally, cuts can be set with DelphesProcessor.add_cut()

• Calculating the observables from the Delphes ROOT files with DelphesProces-
sor.analyse_delphes_samples()

• Saving the results with DelphesProcessor.save()

Please see the tutorial for a detailed walk-through.

Parameters

9

MadMiner Documentation, Release 0.2.3

filename [str or None, optional] Path to MadMiner file (the output of mad-
miner.core.MadMiner.save()). Default value: None.

Methods

add_cut(definition[, pass_if_not_parsed]) Adds a cut as a string that can be parsed by Python’s
eval() function and returns a bool.

add_default_observables([n_leptons_max,
. . .])

Adds a set of simple standard observables: the four-
momenta (parameterized as E, pT, eta, phi) of the
hardest visible particles, and the missing transverse
energy.

add_observable(name, definition[, required,
. . .])

Adds an observable as a string that can be parsed by
Python’s eval() function.

add_observable_from_function(name,
fn[, . . .])

Adds an observable defined through a function.

add_sample(hepmc_filename, . . . [, . . .]) Adds a sample of simulated events.
analyse_delphes_samples([generator_truth,
. . .])

Main function that parses the Delphes samples
(ROOT files), checks acceptance and cuts, and ex-
tracts the observables and weights.

reset_cuts() Resets all cuts.
reset_observables() Resets all observables.
run_delphes(delphes_directory, delphes_card) Runs the fast detector simulation Delphes on all

HepMC samples added so far for which it hasn’t
been run yet.

save(filename_out) Saves the observable definitions, observable values,
and event weights in a MadMiner file.

set_acceptance([pt_min_e, pt_min_mu, . . .]) Sets acceptance cuts for all visible particles.

add_cut(definition, pass_if_not_parsed=False)
Adds a cut as a string that can be parsed by Python’s eval() function and returns a bool.

Parameters

definition [str] An expression that can be parsed by Python’s eval() function and returns a
bool: True for the event to pass this cut, False for it to be rejected. In the definition, all vis-
ible particles can be used: e, mu, j, a, and l provide lists of electrons, muons, jets, photons,
and leptons (electrons and muons combined), in each case sorted by descending transverse
momentum. met provides a missing ET object. visible and all provide access to the sum
of all visible particles and the sum of all visible particles plus MET, respectively. All these
objects are instances of MadMinerParticle, which inherits from scikit-hep’s [LorentzVec-
tor](http://scikit-hep.org/api/math.html#vector-classes). See the link for a documentation
of their properties. In addition, MadMinerParticle have properties charge and pdg_id,
which return the charge in units of elementary charges (i.e. an electron has e[0].charge =
-1.), and the PDG particle ID. For instance, “len(e) >= 2” requires at least two electrons
passing the acceptance cuts, while “mu[0].charge > 0.” specifies that the hardest muon is
positively charged.

pass_if_not_parsed [bool, optional] Whether the cut is passed if the observable cannot be
parsed. Default value: False.

Returns

None

10 Chapter 2. madminer.delphes module

http://scikit-hep.org/api/math.html#vector-classes

MadMiner Documentation, Release 0.2.3

add_default_observables(n_leptons_max=2, n_photons_max=2, n_jets_max=2, in-
clude_met=True, include_visible_sum=True, include_numbers=True,
include_charge=True)

Adds a set of simple standard observables: the four-momenta (parameterized as E, pT, eta, phi) of the
hardest visible particles, and the missing transverse energy.

Parameters

n_leptons_max [int, optional] Number of hardest leptons for which the four-momenta are
saved. Default value: 2.

n_photons_max [int, optional] Number of hardest photons for which the four-momenta are
saved. Default value: 2.

n_jets_max [int, optional] Number of hardest jets for which the four-momenta are saved.
Default value: 2.

include_met [bool, optional] Whether the missing energy observables are stored. Default
value: True.

include_visible_sum [bool, optional] Whether observables characterizing the sum of all
particles are stored. Default value: True.

include_numbers [bool, optional] Whether the number of leptons, photons, and jets is
saved as observable. Default value: True.

include_charge [bool, optional] Whether the lepton charge is saved as observable. Default
value: True.

Returns

None

add_observable(name, definition, required=False, default=None)
Adds an observable as a string that can be parsed by Python’s eval() function.

Parameters

name [str] Name of the observable. Since this name will be used in eval() calls for cuts, this
should not contain spaces or special characters.

definition [str] An expression that can be parsed by Python’s eval() function. As objects,
the visible particles can be used: e, mu, j, a, and l provide lists of electrons, muons, jets,
photons, and leptons (electrons and muons combined), in each case sorted by descend-
ing transverse momentum. met provides a missing ET object. visible and all provide
access to the sum of all visible particles and the sum of all visible particles plus MET,
respectively. All these objects are instances of MadMinerParticle, which inherits from
scikit-hep’s [LorentzVector](http://scikit-hep.org/api/math.html#vector-classes). See the
link for a documentation of their properties. In addition, MadMinerParticle have proper-
ties charge and pdg_id, which return the charge in units of elementary charges (i.e. an
electron has e[0].charge = -1.), and the PDG particle ID. For instance, “abs(j[0].phi() -
j[1].phi())” defines the azimuthal angle between the two hardest jets.

required [bool, optional] Whether the observable is required. If True, an event will only be
retained if this observable is successfully parsed. For instance, any observable involving
“j[1]” will only be parsed if there are at least two jets passing the acceptance cuts. Default
value: False.

default [float or None, optional] If required=False, this is the placeholder value for observ-
ables that cannot be parsed. None is replaced with np.nan. Default value: None.

Returns

11

http://scikit-hep.org/api/math.html#vector-classes

MadMiner Documentation, Release 0.2.3

None

add_observable_from_function(name, fn, required=False, default=None)
Adds an observable defined through a function.

Parameters

name [str] Name of the observable. Since this name will be used in eval() calls for cuts, this
should not contain spaces or special characters.

fn [function] A function with signature observable(leptons, photons, jets, met) where the in-
put arguments are lists of MadMinerParticle instances and a float is returned. The function
should raise a RuntimeError to signal that it is not defined.

required [bool, optional] Whether the observable is required. If True, an event will only be
retained if this observable is successfully parsed. For instance, any observable involving
“j[1]” will only be parsed if there are at least two jets passing the acceptance cuts. Default
value: False.

default [float or None, optional] If required=False, this is the placeholder value for observ-
ables that cannot be parsed. None is replaced with np.nan. Default value: None.

Returns

None

add_sample(hepmc_filename, sampled_from_benchmark, is_background=False,
delphes_filename=None, lhe_filename=None, k_factor=1.0, weights=’delphes’)

Adds a sample of simulated events. A HepMC file (from Pythia) has to be provided always, since some
relevant information is only stored in this file. The user can optionally provide a Delphes file, in this case
run_delphes() does not have to be called.

By default, the weights are read out from the Delphes file and their names from the HepMC file. There are
some issues with current MadGraph versions that lead to Pythia not storing the weights. As work-around,
MadMiner supports reading weights from the LHE file (the observables still come from the Delphes file).
To enable this, use weights=”lhe”.

Parameters

hepmc_filename [str] Path to the HepMC event file (with extension ‘.hepmc’ or
‘.hepmc.gz’).

sampled_from_benchmark [str] Name of the benchmark that was used for sampling in this
event file (the keyword sample_benchmark of madminer.core.MadMiner.run()).

is_background [bool, optional] Whether the sample is a background sample (i.e. without
benchmark reweighting).

delphes_filename [str or None, optional] Path to the Delphes event file (with extension
‘.root’). If None, the user has to call run_delphes(), which will create this file. Default
value: None.

lhe_filename [None or str, optional] Path to the LHE event file (with extension ‘.lhe’ or
‘.lhe.gz’). This is only needed if weights is “lhe”.

k_factor [float, optional] Multiplies the cross sections found in the sample. Default value:
1.

weights [{“delphes”, “lhe”}, optional] If “delphes”, the weights are read out from the
Delphes ROOT file, and their names are taken from the HepMC file. If “lhe” (and
lhe_filename is not None), the weights are taken from the LHE file (and matched with
the observables from the Delphes ROOT file). The “delphes” behaviour is generally better
as it minimizes the risk of mismatching observables and weights, but for some MadGraph

12 Chapter 2. madminer.delphes module

MadMiner Documentation, Release 0.2.3

and Delphes versions there are issues with weights not being saved in the HepMC and
Delphes ROOT files. In this case, setting weights to “lhe” and providing the unweighted
LHE file from MadGraph may be an easy fix. Default value: “delphes”.

Returns

None

analyse_delphes_samples(generator_truth=False, delete_delphes_files=False, refer-
ence_benchmark=None, parse_lhe_events_as_xml=True)

Main function that parses the Delphes samples (ROOT files), checks acceptance and cuts, and extracts the
observables and weights.

Parameters

generator_truth [bool, optional] If True, the generator truth information (as given out by
Pythia) will be parsed. Detector resolution or efficiency effects will not be taken into
account.

delete_delphes_files [bool, optional] If True, the Delphes ROOT files will be deleted after
extracting the information from them. Default value: False.

reference_benchmark [str or None, optional] The weights at the nuisance benchmarks
will be rescaled to some reference theta benchmark: dsigma(x|theta_sampling(x),nu)
-> dsigma(x|theta_ref,nu) = dsigma(x|theta_sampling(x),nu) * dsigma(x|theta_ref,0) /
dsigma(x|theta_sampling(x),0). This sets the name of the reference benchmark. If None,
the first one will be used. Default value: None.

parse_lhe_events_as_xml [bool, optional] Decides whether the LHE events are parsed with
an XML parser (more robust, but slower) or a text parser (less robust, faster). Default
value: True.

Returns

None

reset_cuts()
Resets all cuts.

reset_observables()
Resets all observables.

run_delphes(delphes_directory, delphes_card, initial_command=None, log_file=None)
Runs the fast detector simulation Delphes on all HepMC samples added so far for which it hasn’t been run
yet.

Parameters

delphes_directory [str] Path to the Delphes directory.

delphes_card [str] Path to a Delphes card.

initial_command [str or None, optional] Initial bash commands that have to be executed
before Delphes is run (e.g. to load the correct virtual environment). Default value: None.

log_file [str or None, optional] Path to log file in which the Delphes output is saved. Default
value: None.

Returns

None

save(filename_out)
Saves the observable definitions, observable values, and event weights in a MadMiner file. The parameter,

13

MadMiner Documentation, Release 0.2.3

benchmark, and morphing setup is copied from the file provided during initialization. Nuisance bench-
marks found in the HepMC file are added.

Parameters

filename_out [str] Path to where the results should be saved.

Returns

None

set_acceptance(pt_min_e=None, pt_min_mu=None, pt_min_a=None, pt_min_j=None,
eta_max_e=None, eta_max_mu=None, eta_max_a=None, eta_max_j=None)

Sets acceptance cuts for all visible particles. These are taken into account before observables and cuts are
calculated.

Parameters

pt_min_e [float or None, optional] Minimum electron transverse momentum in GeV. None
means no acceptance cut. Default value: None.

pt_min_mu [float or None, optional] Minimum muon transverse momentum in GeV. None
means no acceptance cut. Default value: None.

pt_min_a [float or None, optional] Minimum photon transverse momentum in GeV. None
means no acceptance cut. Default value: None.

pt_min_j [float or None, optional] Minimum jet transverse momentum in GeV. None means
no acceptance cut. Default value: None.

eta_max_e [float or None, optional] Maximum absolute electron pseudorapidity. None
means no acceptance cut. Default value: None.

eta_max_mu [float or None, optional] Maximum absolute muon pseudorapidity. None
means no acceptance cut. Default value: None.

eta_max_a [float or None, optional] Maximum absolute photon pseudorapidity. None
means no acceptance cut. Default value: None.

eta_max_j [float or None, optional] Maximum absolute jet pseudorapidity. None means no
acceptance cut. Default value: None.

Returns

None

14 Chapter 2. madminer.delphes module

CHAPTER 3

madminer.fisherinformation module

class madminer.fisherinformation.FisherInformation(filename, in-
clude_nuisance_parameters=True,
debug=False)

Bases: object

Functions to calculate expected Fisher information matrices.

After inializing a FisherInformation instance with the filename of a MadMiner file, different information matri-
ces can be calculated:

• FisherInformation.calculate_fisher_information_full_truth() calculates the full truth-level Fisher informa-
tion. This is the information in an idealized measurement where all parton-level particles with their
charges, flavours, and four-momenta can be accessed with perfect accuracy.

• FisherInformation.calculate_fisher_information_full_detector() calculates the full Fisher information in
realistic detector-level observations, estimated with neural networks. In addition to the MadMiner file, this
requires a trained SALLY or SALLINO estimator as well as an unweighted evaluation sample.

• FisherInformation.calculate_fisher_information_rate() calculates the Fisher information in the total cross
section.

• FisherInformation.calculate_fisher_information_hist1d() calculates the Fisher information in the his-
togram of one (parton-level or detector-level) observable.

• FisherInformation.calculate_fisher_information_hist2d() calculates the Fisher information in a two-
dimensional histogram of two (parton-level or detector-level) observables.

• FisherInformation.histogram_of_fisher_information() calculates the full truth-level Fisher information in
different slices of one observable (the “distribution of the Fisher information”).

Finally, don’t forget that in the presence of nuisance parameters the constraint terms also affect the Fisher
information. This term is given by FisherInformation.calculate_fisher_information_nuisance_constraints().

Parameters

filename [str] Path to MadMiner file (for instance the output of mad-
miner.delphes.DelphesProcessor.save()).

15

MadMiner Documentation, Release 0.2.3

include_nuisance_parameters [bool, optional] If True, nuisance parameters are taken into ac-
count. Default value: True.

debug [bool, optional] If True, additional detailed debugging output is printed. Default value:
False.

Methods

calculate_fisher_information_full_detector(. . .)Calculates the full Fisher information in realistic
detector-level observations, estimated with neural
networks.

calculate_fisher_information_full_truth(theta)Calculates the full Fisher information at parton / truth
level.

calculate_fisher_information_hist1d(theta,
. . .)

Calculates the Fisher information in the one-
dimensional histogram of an (parton-level or
detector-level, depending on how the observations in
the MadMiner file were calculated) observable.

calculate_fisher_information_hist2d(theta,
. . .)

Calculates the Fisher information in a two-
dimensional histogram of two (parton-level or
detector-level, depending on how the observations in
the MadMiner file were calculated) observables.

calculate_fisher_information_nuisance_constraints()Builds the Fisher information term representing the
Gaussian constraints on the nuisance parameters

calculate_fisher_information_rate(theta,
. . .)

Calculates the Fisher information in a measurement
of the total cross section (without any kinematic in-
formation).

extract_observables_and_weights(thetas) Extracts observables and weights for given parame-
ter points.

extract_raw_data([theta]) Returns all events together with the benchmark
weights (if theta is None) or weights for a given
theta.

histogram_of_fisher_information(theta,
. . .)

Calculates the full and rate-only Fisher information
in slices of one observable.

calculate_fisher_information_full_detector(theta, model_file, un-
weighted_x_sample_file=None,
luminosity=300000.0, in-
clude_xsec_info=True, mode=’score’,
uncertainty=’ensemble’, ensem-
ble_vote_expectation_weight=None,
batch_size=100000, test_split=0.5)

Calculates the full Fisher information in realistic detector-level observations, estimated with neural net-
works. In addition to the MadMiner file, this requires a trained SALLY or SALLINO estimator.

Nuisance parameter are taken into account automatically if the SALLY / SALLINO model was trained
with them.

Parameters

theta [ndarray] Parameter point theta at which the Fisher information matrix I_ij(theta) is
evaluated.

model_file [str] Filename of a trained local score regression model that was trained on sam-
ples from theta (see madminer.ml.MLForge).

16 Chapter 3. madminer.fisherinformation module

MadMiner Documentation, Release 0.2.3

unweighted_x_sample_file [str or None] Filename of an unweighted x sam-
ple that is sampled according to theta and obeys the cuts (see mad-
miner.sampling.SampleAugmenter.extract_samples_train_local()). If None, the Fisher
information is instead calculated on the full, weighted samples (the data in the MadMiner
file). Default value: None.

luminosity [float, optional] Luminosity in pb^-1. Default value: 300000.

include_xsec_info [bool, optional] Whether the rate information is included in the returned
Fisher information. Default value: True.

mode [{“score”, “information”}, optional] How the ensemble uncertainty on the kinematic
Fisher information is calculated. If mode is “information”, the Fisher information for each
estimator is calculated individually and only then are the sample mean and covariance
calculated. If mode is “score”, the sample mean is calculated for the score for each event.
Default value: “score”.

uncertainty [{“ensemble”, “expectation”, “sum”}, optional] How the covariance matrix of
the Fisher information estimate is calculated. With “ensemble”, the ensemble covariance
is used. With “expectation”, the expectation of the score is used as a measure of the uncer-
tainty of the score estimator, and this uncertainty is propagated through to the covariance
matrix. With “sum”, both terms are summed. Default value: “ensemble”.

ensemble_vote_expectation_weight [float or list of float or None, optional] For ensemble
models, the factor that determines how much more weight is given to those estimators with
small expectation value. If a list is given, results are returned for each element in the list.
If None, or if EnsembleForge.calculate_expectation() has not been called, all estimators
are treated equal. Default value: None.

batch_size [int, optional] Batch size. Default value: 100000.

test_split [float or None, optional] If unweighted_x_sample_file is None, this determines
the fraction of weighted events used for evaluation. If None, all events are used (this will
probably include events used during training!). Default value: 0.5.

Returns

fisher_information [ndarray or list of ndarray] Estimated expected full detector-level Fisher
information matrix with shape (n_parameters, n_parameters). If more then one value
ensemble_vote_expectation_weight is given, this is a list with results for all entries in
ensemble_vote_expectation_weight.

fisher_information_uncertainty [ndarray or list of ndarray or None] Covariance matrix of
the Fisher information matrix with shape (n_parameters, n_parameters, n_parameters,
n_parameters). If more then one value ensemble_vote_expectation_weight is given, this
is a list with results for all entries in ensemble_vote_expectation_weight.

calculate_fisher_information_full_truth(theta, luminosity=300000.0, cuts=None,
efficiency_functions=None, in-
clude_nuisance_parameters=True)

Calculates the full Fisher information at parton / truth level. This is the information in an idealized mea-
surement where all parton-level particles with their charges, flavours, and four-momenta can be accessed
with perfect accuracy, i.e. the latent variables z_parton can be measured directly.

Parameters

theta [ndarray] Parameter point theta at which the Fisher information matrix I_ij(theta) is
evaluated.

luminosity [float] Luminosity in pb^-1.

17

MadMiner Documentation, Release 0.2.3

cuts [None or list of str, optional] Cuts. Each entry is a parseable Python expression that
returns a bool (True if the event should pass a cut, False otherwise). Default value: None.

efficiency_functions [list of str or None] Efficiencies. Each entry is a parseable Python
expression that returns a float for the efficiency of one component. Default value: None.

include_nuisance_parameters [bool, optional] If True, nuisance parameters are taken into
account. Default value: True.

Returns

fisher_information [ndarray] Expected full truth-level Fisher information matrix with
shape (n_parameters, n_parameters).

fisher_information_uncertainty [ndarray] Covariance matrix of the Fisher information
matrix with shape (n_parameters, n_parameters, n_parameters, n_parameters), calcu-
lated with plain Gaussian error propagation.

calculate_fisher_information_hist1d(theta, luminosity, observ-
able, nbins, histrange=None,
cuts=None, efficiency_functions=None,
n_events_dynamic_binning=100000)

Calculates the Fisher information in the one-dimensional histogram of an (parton-level or detector-level,
depending on how the observations in the MadMiner file were calculated) observable.

Parameters

theta [ndarray] Parameter point theta at which the Fisher information matrix I_ij(theta) is
evaluated.

luminosity [float] Luminosity in pb^-1.

observable [str] Expression for the observable to be histogrammed. The str will be parsed
by Python’s eval() function and can use the names of the observables in the MadMiner
files.

nbins [int] Number of bins in the histogram, excluding overflow bins.

histrange [tuple of float or None, optional] Minimum and maximum value of the histogram
in the form (min, max). Overflow bins are always added. If None, variable-width bins with
equal cross section are constructed automatically. Default value: None.

cuts [None or list of str, optional] Cuts. Each entry is a parseable Python expression that
returns a bool (True if the event should pass a cut, False otherwise). Default value: None.

efficiency_functions [list of str or None] Efficiencies. Each entry is a parseable Python
expression that returns a float for the efficiency of one component. Default value: None.

n_events_dynamic_binning [int, optional] Number of events used to calculate the dynamic
binning (if histrange is None). Default value: 100000.

Returns

fisher_information [ndarray] Expected Fisher information in the histogram with shape
(n_parameters, n_parameters).

fisher_information_uncertainty [ndarray] Covariance matrix of the Fisher information
matrix with shape (n_parameters, n_parameters, n_parameters, n_parameters), calcu-
lated with plain Gaussian error propagation.

calculate_fisher_information_hist2d(theta, luminosity, observable1, nbins1, observ-
able2, nbins2, histrange1=None, histrange2=None,
cuts=None, efficiency_functions=None,
n_events_dynamic_binning=100000)

18 Chapter 3. madminer.fisherinformation module

MadMiner Documentation, Release 0.2.3

Calculates the Fisher information in a two-dimensional histogram of two (parton-level or detector-level,
depending on how the observations in the MadMiner file were calculated) observables.

Parameters

theta [ndarray] Parameter point theta at which the Fisher information matrix I_ij(theta) is
evaluated.

luminosity [float] Luminosity in pb^-1.

observable1 [str] Expression for the first observable to be histogrammed. The str will be
parsed by Python’s eval() function and can use the names of the observables in the Mad-
Miner files.

nbins1 [int] Number of bins along the first axis in the histogram, excluding overflow bins.

observable2 [str] Expression for the first observable to be histogrammed. The str will be
parsed by Python’s eval() function and can use the names of the observables in the Mad-
Miner files.

nbins2 [int] Number of bins along the first axis in the histogram, excluding overflow bins.

histrange1 [tuple of float or None, optional] Minimum and maximum value of the first
axis of the histogram in the form (min, max). Overflow bins are always added. If None,
variable-width bins with equal cross section are constructed automatically. Default value:
None.

histrange2 [tuple of float or None, optional] Minimum and maximum value of the first
axis of the histogram in the form (min, max). Overflow bins are always added. If None,
variable-width bins with equal cross section are constructed automatically. Default value:
None.

cuts [None or list of str, optional] Cuts. Each entry is a parseable Python expression that
returns a bool (True if the event should pass a cut, False otherwise). Default value: None.

efficiency_functions [list of str or None] Efficiencies. Each entry is a parseable Python
expression that returns a float for the efficiency of one component. Default value: None.

n_events_dynamic_binning [int, optional] Number of events used to calculate the dynamic
binning (if histrange is None). Default value: 100000.

Returns

fisher_information [ndarray] Expected Fisher information in the histogram with shape
(n_parameters, n_parameters).

fisher_information_uncertainty [ndarray] Covariance matrix of the Fisher information
matrix with shape (n_parameters, n_parameters, n_parameters, n_parameters), calcu-
lated with plain Gaussian error propagation.

calculate_fisher_information_nuisance_constraints()
Builds the Fisher information term representing the Gaussian constraints on the nuisance parameters

calculate_fisher_information_rate(theta, luminosity, cuts=None, ef-
ficiency_functions=None, in-
clude_nuisance_parameters=True)

Calculates the Fisher information in a measurement of the total cross section (without any kinematic in-
formation).

Parameters

theta [ndarray] Parameter point theta at which the Fisher information matrix I_ij(theta) is
evaluated.

19

MadMiner Documentation, Release 0.2.3

luminosity [float] Luminosity in pb^-1.

cuts [None or list of str, optional] Cuts. Each entry is a parseable Python expression that
returns a bool (True if the event should pass a cut, False otherwise). Default value: None.

efficiency_functions [list of str or None] Efficiencies. Each entry is a parseable Python
expression that returns a float for the efficiency of one component. Default value: None.

include_nuisance_parameters [bool, optional] If True, nuisance parameters are taken into
account. Default value: True.

Returns

fisher_information [ndarray] Expected Fisher information in the total cross section with
shape (n_parameters, n_parameters).

fisher_information_uncertainty [ndarray] Covariance matrix of the Fisher information
matrix with shape (n_parameters, n_parameters, n_parameters, n_parameters), calcu-
lated with plain Gaussian error propagation.

extract_observables_and_weights(thetas)
Extracts observables and weights for given parameter points.

Parameters

thetas [ndarray] Parameter points, with shape (n_thetas, n_parameters).

Returns

x [ndarray] Observations x with shape (n_events, n_observables).

weights [ndarray] Weights dsigma(x|theta) in pb with shape (n_thetas, n_events).

extract_raw_data(theta=None)
Returns all events together with the benchmark weights (if theta is None) or weights for a given theta.

Parameters

theta [None or ndarray, optional] If None, the function returns the benchmark weights. Oth-
erwise it uses morphing to calculate the weights for this value of theta. Default value:
None.

Returns

x [ndarray] Observables with shape (n_unweighted_samples, n_observables).

weights [ndarray] If theta is None, benchmark weights with shape (n_unweighted_samples,
n_benchmarks_phys) in pb. Otherwise, weights for the given parameter theta with shape
(n_unweighted_samples,) in pb.

histogram_of_fisher_information(theta, luminosity, observable, nbins, histrange,
cuts=None, efficiency_functions=None)

Calculates the full and rate-only Fisher information in slices of one observable.

Parameters

theta [ndarray] Parameter point theta at which the Fisher information matrix I_ij(theta) is
evaluated.

luminosity [float] Luminosity in pb^-1.

observable [str] Expression for the observable to be sliced. The str will be parsed by
Python’s eval() function and can use the names of the observables in the MadMiner files.

nbins [int] Number of bins in the slicing, excluding overflow bins.

20 Chapter 3. madminer.fisherinformation module

MadMiner Documentation, Release 0.2.3

histrange [tuple of float] Minimum and maximum value of the slicing in the form (min,
max). Overflow bins are always added.

cuts [None or list of str, optional] Cuts. Each entry is a parseable Python expression that
returns a bool (True if the event should pass a cut, False otherwise). Default value: None.

efficiency_functions [list of str or None] Efficiencies. Each entry is a parseable Python
expression that returns a float for the efficiency of one component. Default value: None.

Returns

bin_boundaries [ndarray] Observable slice boundaries.

sigma_bins [ndarray] Cross section in pb in each of the slices.

rate_fisher_infos [ndarray] Expected rate-only Fisher information for each slice. Has shape
(n_slices, n_parameters, n_parameters).

full_fisher_infos_truth [ndarray] Expected full truth-level Fisher information for each
slice. Has shape (n_slices, n_parameters, n_parameters).

madminer.fisherinformation.profile_information(fisher_information, remain-
ing_components, covariance=None,
error_propagation_n_ensemble=1000,
error_propagation_factor=0.001)

Calculates the profiled Fisher information matrix as defined in Appendix A.4 of arXiv:1612.05261.

Parameters

fisher_information [ndarray] Original n x n Fisher information.

remaining_components [list of int] List with m entries, each an int with 0 <= remain-
ing_compoinents[i] < n. Denotes which parameters are kept, and their new order. All other
parameters or profiled out.

covariance [ndarray or None, optional] The covariance matrix of the original Fisher informa-
tion with shape (n, n, n, n). If None, the error on the profiled information is not calculated.
Default value: None.

error_propagation_n_ensemble [int, optional] If covariance is not None, this sets the number
of Fisher information matrices drawn from a normal distribution for the Monte-Carlo error
propagation. Default value: 1000.

error_propagation_factor [float, optional] If covariance is not None, this factor multiplies the
covariance of the distribution of Fisher information matrices. Smaller factors can avoid
problems with ill-behaved Fisher information matrices. Default value: 1.e-3.

Returns

profiled_fisher_information [ndarray] Profiled m x m Fisher information, where the i-
th row or column corresponds to the remaining_components[i]-th row or column of
fisher_information.

profiled_fisher_information_covariance [ndarray] Covariance matrix of the profiled Fishere
information matrix with shape (m, m, m, m).

madminer.fisherinformation.project_information(fisher_information, remain-
ing_components, covariance=None)

Calculates projections of a Fisher information matrix, that is, “deletes” the rows and columns corresponding to
some parameters not of interest.

Parameters

fisher_information [ndarray] Original n x n Fisher information.

21

MadMiner Documentation, Release 0.2.3

remaining_components [list of int] List with m entries, each an int with 0 <= remain-
ing_compoinents[i] < n. Denotes which parameters are kept, and their new order. All other
parameters or projected out.

covariance [ndarray or None, optional] The covariance matrix of the original Fisher informa-
tion with shape (n, n, n, n). If None, the error on the profiled information is not calculated.
Default value: None.

Returns

projected_fisher_information [ndarray] Projected m x m Fisher information, where the i-
th row or column corresponds to the remaining_components[i]-th row or column of
fisher_information.

profiled_fisher_information_covariance [ndarray] Covariance matrix of the projected Fisher
information matrix with shape (m, m, m, m). Only returned if covariance is not None.

22 Chapter 3. madminer.fisherinformation module

CHAPTER 4

madminer.lhe module

class madminer.lhe.LHEProcessor(filename)
Bases: object

Detector simulation with smearing functions and simple calculation of observables.

After setting up the parameter space and benchmarks and running MadGraph and Pythia, all of which is or-
ganized in the madminer.core.MadMiner class, the next steps are the simulation of detector effects and the
calculation of observables. Different tools can be used for these tasks, please feel free to implement the detector
simulation and analysis routine of your choice.

This class provides a simple implementation in which detector effects are modeled with smearing functions. Its
workflow consists of the following steps:

• Initializing the class with the filename of a MadMiner HDF5 file (the output of mad-
miner.core.MadMiner.save())

• Adding one or multiple event samples produced by MadGraph and Pythia in LHEProcessor.add_sample().

• Running Delphes on the samples that require it through LHEProcessor.run_delphes().

• Optionally, smearing functions for all visible particles can be defined with LHEProcessor.set_smearing().

• Defining observables through LHEProcessor.add_observable() or LHEProces-
sor.add_observable_from_function(). A simple set of default observables is provided in LHEPro-
cessor.add_default_observables()

• Optionally, cuts can be set with LHEProcessor.add_cut()

• Calculating the observables from the Delphes ROOT files with LHEProcessor.analyse_delphes_samples()

• Saving the results with LHEProcessor.save()

Please see the tutorial for a detailed walk-through.

Parameters

filename [str or None, optional] Path to MadMiner file (the output of mad-
miner.core.MadMiner.save()). Default value: None.

23

MadMiner Documentation, Release 0.2.3

Methods

add_cut(definition[, pass_if_not_parsed]) Adds a cut as a string that can be parsed by Python’s
eval() function and returns a bool.

add_default_observables([n_leptons_max,
. . .])

Adds a set of simple standard observables: the four-
momenta (parameterized as E, pT, eta, phi) of the
hardest visible particles, and the missing transverse
energy.

add_observable(name, definition[, required,
. . .])

Adds an observable as a string that can be parsed by
Python’s eval() function.

add_observable_from_function(name,
fn[, . . .])

Adds an observable defined through a function.

add_sample(lhe_filename, sam-
pled_from_benchmark)

Adds an LHE sample of simulated events.

analyse_samples([reference_benchmark, . . .]) Main function that parses the LHE samples, applies
detector effects, checks cuts, and extracts the observ-
ables and weights.

reset_cuts() Resets all cuts.
reset_observables() Resets all observables.
save(filename_out) Saves the observable definitions, observable values,

and event weights in a MadMiner file.
set_smearing([pdgids, . . .]) Sets up the smearing of measured momenta from

shower and detector effects.

add_cut(definition, pass_if_not_parsed=False)
Adds a cut as a string that can be parsed by Python’s eval() function and returns a bool.

Parameters

definition [str] An expression that can be parsed by Python’s eval() function and returns a
bool: True for the event to pass this cut, False for it to be rejected. In the definition, all vis-
ible particles can be used: e, mu, j, a, and l provide lists of electrons, muons, jets, photons,
and leptons (electrons and muons combined), in each case sorted by descending transverse
momentum. met provides a missing ET object. visible and all provide access to the sum
of all visible particles and the sum of all visible particles plus MET, respectively. All these
objects are instances of MadMinerParticle, which inherits from scikit-hep’s [LorentzVec-
tor](http://scikit-hep.org/api/math.html#vector-classes). See the link for a documentation
of their properties. In addition, MadMinerParticle have properties charge and pdg_id,
which return the charge in units of elementary charges (i.e. an electron has e[0].charge =
-1.), and the PDG particle ID. For instance, “len(e) >= 2” requires at least two electrons
passing the cuts, while “mu[0].charge > 0.” specifies that the hardest muon is positively
charged.

pass_if_not_parsed [bool, optional] Whether the cut is passed if the observable cannot be
parsed. Default value: False.

Returns

None

add_default_observables(n_leptons_max=2, n_photons_max=2, n_jets_max=2, in-
clude_met=True, include_visible_sum=True, include_numbers=True,
include_charge=True)

Adds a set of simple standard observables: the four-momenta (parameterized as E, pT, eta, phi) of the
hardest visible particles, and the missing transverse energy.

24 Chapter 4. madminer.lhe module

http://scikit-hep.org/api/math.html#vector-classes

MadMiner Documentation, Release 0.2.3

Parameters

n_leptons_max [int, optional] Number of hardest leptons for which the four-momenta are
saved. Default value: 2.

n_photons_max [int, optional] Number of hardest photons for which the four-momenta are
saved. Default value: 2.

n_jets_max [int, optional] Number of hardest jets for which the four-momenta are saved.
Default value: 2.

include_met [bool, optional] Whether the missing energy observables are stored. Default
value: True.

include_visible_sum [bool, optional] Whether observables characterizing the sum of all
particles are stored. Default value: True.

include_numbers [bool, optional] Whether the number of leptons, photons, and jets is
saved as observable. Default value: True.

include_charge [bool, optional] Whether the lepton charge is saved as observable. Default
value: True.

Returns

None

add_observable(name, definition, required=False, default=None)
Adds an observable as a string that can be parsed by Python’s eval() function.

Parameters

name [str] Name of the observable. Since this name will be used in eval() calls for cuts, this
should not contain spaces or special characters.

definition [str] An expression that can be parsed by Python’s eval() function. As objects,
all particles can be used: e, mu, j, a, l, v provide lists of electrons, muons, jets, photons,
leptons (electrons and muons combined), and neutrinos, in each case sorted by descending
transverse momentum. met provides a missing ET object. p gives all particles in the
same order as in the LHE file (i.e. in the same order as defined in the MadGraph process
card). All these objects are instances of MadMinerParticle, which inherits from scikit-
hep’s [LorentzVector](http://scikit-hep.org/api/math.html#vector-classes). See the link for
a documentation of their properties. In addition, MadMinerParticle have properties charge
and pdg_id, which return the charge in units of elementary charges (i.e. an electron has
e[0].charge = -1.), and the PDG particle ID. For instance, “abs(j[0].phi() - j[1].phi())”
defines the azimuthal angle between the two hardest jets.

required [bool, optional] Whether the observable is required. If True, an event will only be
retained if this observable is successfully parsed. For instance, any observable involving
“j[1]” will only be parsed if there are at least two jets passing the acceptance cuts. Default
value: False.

default [float or None, optional] If required=False, this is the placeholder value for observ-
ables that cannot be parsed. None is replaced with np.nan. Default value: None.

Returns

None

add_observable_from_function(name, fn, required=False, default=None)
Adds an observable defined through a function.

Parameters

25

http://scikit-hep.org/api/math.html#vector-classes

MadMiner Documentation, Release 0.2.3

name [str] Name of the observable. Since this name will be used in eval() calls for cuts, this
should not contain spaces or special characters.

fn [function] A function with signature observable(particles) where the input arguments are
lists of MadMinerParticle instances (ordered in the same way as in the LHE file) and a
float is returned. The function should raise a RuntimeError to signal that it is not defined.

required [bool, optional] Whether the observable is required. If True, an event will only be
retained if this observable is successfully parsed. For instance, any observable involving
“j[1]” will only be parsed if there are at least two jets passing the acceptance cuts. Default
value: False.

default [float or None, optional] If required=False, this is the placeholder value for observ-
ables that cannot be parsed. None is replaced with np.nan. Default value: None.

Returns

None

add_sample(lhe_filename, sampled_from_benchmark, is_background=False, k_factor=1.0)
Adds an LHE sample of simulated events.

Parameters

lhe_filename [str] Path to the LHE event file (with extension ‘.lhe’ or ‘.lhe.gz’).

sampled_from_benchmark [str] Name of the benchmark that was used for sampling in this
event file (the keyword sample_benchmark of madminer.core.MadMiner.run()).

is_background [bool, optional] Whether the sample is a background sample (i.e. without
benchmark reweighting).

k_factor [float, optional] Multiplies the cross sections found in the sample. Default value:
1.

Returns

None

analyse_samples(reference_benchmark=None, parse_events_as_xml=True)
Main function that parses the LHE samples, applies detector effects, checks cuts, and extracts the observ-
ables and weights.

Parameters

reference_benchmark [str or None, optional] The weights at the nuisance benchmarks
will be rescaled to some reference theta benchmark: dsigma(x|theta_sampling(x),nu)
-> dsigma(x|theta_ref,nu) = dsigma(x|theta_sampling(x),nu) * dsigma(x|theta_ref,0) /
dsigma(x|theta_sampling(x),0). This sets the name of the reference benchmark. If None,
the first one will be used. Default value: None.

parse_events_as_xml [bool, optional] Decides whether the LHE events are parsed with an
XML parser (more robust, but slower) or a text parser (less robust, faster). Default value:
True.

Returns

None

reset_cuts()
Resets all cuts.

reset_observables()
Resets all observables.

26 Chapter 4. madminer.lhe module

MadMiner Documentation, Release 0.2.3

save(filename_out)
Saves the observable definitions, observable values, and event weights in a MadMiner file. The parameter,
benchmark, and morphing setup is copied from the file provided during initialization. Nuisance bench-
marks found in the LHE file are added.

Parameters

filename_out [str] Path to where the results should be saved.

Returns

None

set_smearing(pdgids=None, energy_resolution_abs=0.0, energy_resolution_rel=0.0,
pt_resolution_abs=0.0, pt_resolution_rel=0.0, eta_resolution_abs=0.0,
eta_resolution_rel=0.0, phi_resolution_abs=0.0, phi_resolution_rel=0.0)

Sets up the smearing of measured momenta from shower and detector effects.

This function can be called with pdgids=None, in which case the settinigs are used for all visible particles,
or with pdgids set to a list of PDG ids representing particles, for instance [11, -11] for electrons (and
positrons).

For all particles of this type, and for the energy, pT, phi, and eta, the measurement error is drawn from a
Gaussian with mean 0 and standard deviation given by (X_resolution_abs + X * X_resolution_rel). Here X
is the quantity (E, pT, phi, eta) of interest and X_resolution_abs and X_resolution_rel are the corresponding
keywords. In the case of energy and pT, values smaller than 0 will lead to a re-drawing of the measurement
error.

Instead of such numerical values, either the energy or pT resolution (but not both!) may be set to None.
In this case, this quantity is calculated from the mass of the particle and all other smeared particles. For
instance, when pt_resolution_abs is None or pt_resolution_rel is None, for the given particles the energy,
phi, and eta are smeared (according to their respective resolutions). Then the transverse momentum is
calculated from the on-shell condition p^2 = m^2, or pT = sqrt(E^2 - m^2) / cosh(eta). When this does
not have a solution, the pT is set to zero. On the other hand, when energy_resolution_abs is None or
energy_resolution_abs is None, for the given particles the pT, phi, and eta are smeared, and then the
energy is calculated as E = sqrt(pT * cosh(eta))^2 + m^2).

Parameters

pdgids [None or list of int, optional] Defines the particles these smearing functions affect.
If None, all particles are affected. Note that if set_smearing() is called multiple times for
a given particle, the earlier calls will be forgotten and only the last smearing function will
take effect. Default value: None.

energy_resolution_abs [float or None, optional] Absolute measurement uncertainty for the
energy in GeV. None means that the energy is not smeared directly, but calculated from
the on-shell condition. Default value: 0.

energy_resolution_rel [float or None, optional] Relative measurement uncertainty for the
energy. None means that the energy is not smeared directly, but calculated from the on-
shell condition. Default value: 0.

pt_resolution_abs [float or None, optional] Absolute measurement uncertainty for the pT
in GeV. None means that the pT is not smeared directly, but calculated from the on-shell
condition. Default value: 0.

pt_resolution_rel [float or None, optional] Relative measurement uncertainty for the pT.
None means that the pT is not smeared directly, but calculated from the on-shell condition.
Default value: 0.

eta_resolution_abs [float, optional] Absolute measurement uncertainty for eta. Default
value: 0.

27

MadMiner Documentation, Release 0.2.3

eta_resolution_rel [float, optional] Relative measurement uncertainty for eta. Default
value: 0.

phi_resolution_abs [float, optional] Absolute measurement uncertainty for phi. Default
value: 0.

phi_resolution_rel [float, optional] Relative measurement uncertainty for phi. Default
value: 0.

Returns

None

28 Chapter 4. madminer.lhe module

CHAPTER 5

madminer.ml module

class madminer.ml.EnsembleForge(estimators=None, debug=False)
Bases: object

Ensemble methods for likelihood ratio and score information.

Generally, EnsembleForge instances can be used very similarly to MLForge instances:

• The initialization of EnsembleForge takes a list of (trained or untrained) MLForge instances.

• The methods EnsembleForge.train_one() and EnsembleForge.train_all() train the estimators (this can also
be done outside of EnsembleForge).

• EnsembleForge.calculate_expectation() can be used to calculate the expectation of the estimation likeli-
hood ratio or the expected estimated score over a validation sample. Ideally (and assuming the correct
sampling), these expectation values should be close to zero. Deviations from zero therefore point out that
the estimator is probably inaccurate.

• EnsembleForge.evaluate() and EnsembleForge.calculate_fisher_information() can then be used to calcu-
late ensemble predictions. The user has the option to treat all estimators equally (‘committee method’) or
to give those with expected score / ratio close to zero a higher weight.

• EnsembleForge.save() and EnsembleForge.load() can store all estimators in one folder.

The individual estimators in the ensemble can be trained with different methods, but they have to be of the same
type: either all estimators are single-parameterized likelihood ratio estimators, or all estimators are doubly-
parameterized likelihood estimators, or all estimators are local score regressors.

Parameters

estimators [None or int or list of (MLForge or str), optional] If int, sets the number of estimators
that will be created as new MLForge instances. If list, sets the estimators directly, either from
MLForge instances or filenames (that are then loaded with MLForge.load()). If None, the
ensemble is initialized without estimators. Note that the estimators have to be consistent:
either all of them are trained with a local score method (‘sally’ or ‘sallino’); or all of them
are trained with a single-parameterized method (‘carl’, ‘rolr’, ‘rascal’, ‘scandal’, ‘alice’, or
‘alices’); or all of them are trained with a doubly parameterized method (‘carl2’, ‘rolr2’,
‘rascal2’, ‘alice2’, or ‘alices2’). Mixing estimators of different types within one of these

29

MadMiner Documentation, Release 0.2.3

three categories is supported, but mixing estimators from different categories is not and will
raise a RuntimeException. Default value: None.

Attributes

estimators [list of MLForge] The estimators in the form of MLForge instances.

debug [bool, optional] If True, additional detailed debugging output is printed. Default value:
False.

Methods

add_estimator(estimator) Adds an estimator to the ensemble.
calculate_expectation(x_filename[, . . .]) Calculates the expectation of the estimation likeli-

hood ratio or the expected estimated score over a val-
idation sample.

calculate_fisher_information(x[, . . .]) Calculates expected Fisher information matrices for
an ensemble of SALLY estimators.

evaluate(x_filename[, theta0_filename, . . .]) Evaluates the estimators of the likelihood ratio (or, if
method is ‘sally’ or ‘sallino’, the score), and calcu-
lates the ensemble mean or variance.

load(folder) Loads the estimator ensemble from a folder.
save(folder[, save_model]) Saves the estimator ensemble to a folder.
train_all(**kwargs) Trains all estimators.
train_one(i, **kwargs) Trains an individual estimator.

add_estimator(estimator)
Adds an estimator to the ensemble.

Parameters

estimator [MLForge or str] The estimator, either as MLForge instance or filename (which
is then loaded with MLForge.load()).

Returns

None

calculate_expectation(x_filename, theta0_filename=None, theta1_filename=None)
Calculates the expectation of the estimation likelihood ratio or the expected estimated score over a valida-
tion sample. Ideally (and assuming the correct sampling), these expectation values should be close to zero.
Deviations from zero therefore point out that the estimator is probably inaccurate.

Parameters

x_filename [str] Path to an unweighted sample of observations, as saved by the mad-
miner.sampling.SampleAugmenter functions.

theta0_filename [str or None, optional] Path to an unweighted sample of numerator param-
eters, as saved by the madminer.sampling.SampleAugmenter functions. Required if the
estimators were trained with the ‘alice’, ‘alice2’, ‘alices’, ‘alices2’, ‘carl’, ‘carl2’, ‘nde’,
‘rascal’, ‘rascal2’, ‘rolr’, ‘rolr2’, or ‘scandal’ method. Default value: None.

theta1_filename [str or None, optional] Path to an unweighted sample of denominator pa-
rameters, as saved by the madminer.sampling.SampleAugmenter functions. Required if the
estimators were trained with the ‘alice2’, ‘alices2’, ‘carl2’, ‘rascal2’, or ‘rolr2’ method.
Default value: None.

30 Chapter 5. madminer.ml module

MadMiner Documentation, Release 0.2.3

Returns

expectations [ndarray] Expected score (if the estimators were trained with the ‘sally’ or
‘sallino’ methods) or likelihood ratio (otherwise).

calculate_fisher_information(x, obs_weights=None, n_events=1, mode=’score’, un-
certainty=’ensemble’, vote_expectation_weight=None, re-
turn_individual_predictions=False)

Calculates expected Fisher information matrices for an ensemble of SALLY estimators.

There are two ways of calculating the ensemble average. In the default “score” mode, the ensemble
average for the score is calculated for each event, and the Fisher information is calculated based on these
mean scores. In the “information” mode, the Fisher information is calculated for each estimator separately
and the ensemble mean is calculated only for the final Fisher information matrix. The “score” mode is
generally assumed to be more precise and is the default.

In the “score” mode, the covariance matrix of the final result is calculated in the following way: - For each
event x and each estimator a, the “shifted” predicted score is calculated as

t_a’(x) = t(x) + 1/sqrt(n) * (t_a(x) - t(x)). Here t(x) is the mean score (averaged over the ensem-
ble) for this event, t_a(x) is the prediction of estimator a for this event, and n is the number of
estimators. The ensemble variance of these shifted score predictions is equal to the uncertainty
on the mean of the ensemble of original predictions.

• For each estimator a, the shifted Fisher information matrix I_a’ is calculated from the shifted predicted
scores.

• The ensemble covariance between all Fisher information matrices I_a’ is calculated and taken as the
measure of uncertainty on the Fisher information calculated from the mean scores.

In the “information” mode, the user has the option to treat all estimators equally (‘committee method’)
or to give those with expected score close to zero (as calculated by calculate_expectation()) a higher
weight. In this case, the ensemble mean I is calculated as I = sum_i w_i I_i with weights w_i = exp(-
vote_expectation_weight |E[t_i]|) / sum_j exp(-vote_expectation_weight |E[t_k]|). Here I_i are the indi-
vidual estimators and E[t_i] is the expectation value calculated by calculate_expectation().

Parameters

x [str or ndarray] Sample of observations, or path to numpy file with observations, as saved
by the madminer.sampling.SampleAugmenter functions. Note that this sample has to be
sampled from the reference parameter where the score is estimated with the SALLY /
SALLINO estimator!

obs_weights [None or ndarray, optional] Weights for the observations. If None, all events
are taken to have equal weight. Default value: None.

n_events [float, optional] Expected number of events for which the kinematic Fisher infor-
mation should be calculated. Default value: 1.

mode [{“score”, “information”}, optional] If mode is “information”, the Fisher information
for each estimator is calculated individually and only then are the sample mean and co-
variance calculated. If mode is “score”, the sample mean is calculated for the score for
each event. Default value: “score”.

uncertainty [{“ensemble”, “expectation”, “sum”}, optional] How the covariance matrix of
the Fisher information estimate is calculate. With “ensemble”, the ensemble covariance is
used (only supported if mode is “information”). With “expectation”, the expectation of the
score is used as a measure of the uncertainty of the score estimator, and this uncertainty is
propagated through to the covariance matrix. With “sum”, both terms are summed (only
supported if mode is “information”). Default value: “ensemble”.

31

MadMiner Documentation, Release 0.2.3

vote_expectation_weight [float or list of float or None, optional] If mode is “information”,
this factor determines how much more weight is given to those estimators with small
expectation value (as calculated by calculate_expectation()). If a list is given, results are
returned for each element in the list. If None, or if calculate_expectation() has not been
called, all estimators are treated equal. Default value: None.

return_individual_predictions [bool, optional] If mode is “information”, sets whether the
individual estimator predictions are returned. Default value: False.

Returns

mean_prediction [ndarray or list of ndarray] The (weighted) ensemble mean of the esti-
mators. If the estimators were trained with method=’sally’ or method=’sallino’, this is
an array of the estimator for t(x_i | theta_ref) for all events i. Otherwise, the estimated
likelihood ratio (if test_all_combinations is True, the result has shape (n_thetas, n_x), oth-
erwise, it has shape (n_samples,)). If more then one value vote_expectation_weight is
given, this is a list with results for all entries in vote_expectation_weight.

covariance [ndarray or list of ndarray] The covariance matrix of the Fisher informa-
tion estimate. Its definition depends on the value of uncertainty; by default, the co-
variance is defined as the ensemble covariance (only supported if mode is “infor-
mation”). This object has four indices, cov_(ij)(i’j’), ordered as i j i’ j’. It has
shape (n_parameters, n_parameters, n_parameters, n_parameters). If more then one
value vote_expectation_weight is given, this is a list with results for all entries in
vote_expectation_weight.

weights [ndarray or list of ndarray] Only returned if return_individual_predictions is True.
The estimator weights w_i. If more then one value vote_expectation_weight is given, this
is a list with results for all entries in vote_expectation_weight.

individual_predictions [ndarray] Only returned if return_individual_predictions is True.
The individual estimator predictions.

evaluate(x_filename, theta0_filename=None, theta1_filename=None, test_all_combinations=True,
vote_expectation_weight=None, calculate_covariance=False, re-
turn_individual_predictions=False)

Evaluates the estimators of the likelihood ratio (or, if method is ‘sally’ or ‘sallino’, the score), and calcu-
lates the ensemble mean or variance.

The user has the option to treat all estimators equally (‘committee method’) or to give those with ex-
pected score / ratio close to zero (as calculated by calculate_expectation()) a higher weight. In the
latter case, the ensemble mean f(x) is calculated as f(x) = sum_i w_i f_i(x) with weights w_i = exp(-
vote_expectation_weight |E[f_i]|) / sum_j exp(-vote_expectation_weight |E[f_j]|). Here f_i(x) are the indi-
vidual estimators and E[f_i] is the expectation value calculated by calculate_expectation().

Parameters

x_filename [str] Path to an unweighted sample of observations, as saved by the mad-
miner.sampling.SampleAugmenter functions.

theta0_filename [str or None, optional] Path to an unweighted sample of numerator param-
eters, as saved by the madminer.sampling.SampleAugmenter functions. Required if the
estimator was trained with the ‘alice’, ‘alice2’, ‘alices’, ‘alices2’, ‘carl’, ‘carl2’, ‘nde’,
‘rascal’, ‘rascal2’, ‘rolr’, ‘rolr2’, or ‘scandal’ method. Default value: None.

theta1_filename [str or None, optional] Path to an unweighted sample of denominator pa-
rameters, as saved by the madminer.sampling.SampleAugmenter functions. Required if
the estimator was trained with the ‘alice2’, ‘alices2’, ‘carl2’, ‘rascal2’, or ‘rolr2’ method.
Default value: None.

32 Chapter 5. madminer.ml module

MadMiner Documentation, Release 0.2.3

test_all_combinations [bool, optional] If method is not ‘sally’ and not ‘sallino’: If False,
the number of samples in the observable and theta files has to match, and the likelihood
ratio is evaluated only for the combinations r(x_i | theta0_i, theta1_i). If True, r(x_i |
theta0_j, theta1_j) for all pairwise combinations i, j are evaluated. Default value: True.

vote_expectation_weight [float or list of float or None, optional] Factor that determines
how much more weight is given to those estimators with small expectation value (as cal-
culated by calculate_expectation()). If a list is given, results are returned for each element
in the list. If None, or if calculate_expectation() has not been called, all estimators are
treated equal. Default value: None.

calculate_covariance [bool, optional] Whether the covariance matrix is calculated. Default
value: False.

return_individual_predictions [bool, optional] Whether the individual estimator predic-
tions are returned. Default value: False.

Returns

mean_prediction [ndarray or list of ndarray] The (weighted) ensemble mean of the esti-
mators. If the estimators were trained with method=’sally’ or method=’sallino’, this is
an array of the estimator for t(x_i | theta_ref) for all events i. Otherwise, the estimated
likelihood ratio (if test_all_combinations is True, the result has shape (n_thetas, n_x), oth-
erwise, it has shape (n_samples,)). If more then one value vote_expectation_weight is
given, this is a list with results for all entries in vote_expectation_weight.

covariance [None or ndarray or list of ndarray] The covariance matrix of the (flat-
tened) predictions, defined as the ensemble covariance. If more then one value
vote_expectation_weight is given, this is a list with results for all entries in
vote_expectation_weight. If calculate_covariance is False, None is returned.

weights [ndarray or list of ndarray] Only returned if return_individual_predictions is True.
The estimator weights w_i. If more then one value vote_expectation_weight is given, this
is a list with results for all entries in vote_expectation_weight.

individual_predictions [ndarray] Only returned if return_individual_predictions is True.
The individual estimator predictions.

load(folder)
Loads the estimator ensemble from a folder.

Parameters

folder [str] Path to the folder.

Returns

None

save(folder, save_model=False)
Saves the estimator ensemble to a folder.

Parameters

folder [str] Path to the folder.

save_model [bool, optional] If True, the whole model is saved in addition to the state dict.
This is not necessary for loading it again with EnsembleForge.load(), but can be useful for
debugging, for instance to plot the computational graph.

Returns

None

33

MadMiner Documentation, Release 0.2.3

train_all(**kwargs)
Trains all estimators. See MLForge.train().

Parameters

kwargs [dict] Parameters for MLForge.train(). If a value in this dict is a list, it has to have
length n_estimators and contain one value of this parameter for each of the estimators.
Otherwise the value is used as parameter for the training of all the estimators.

Returns

None

train_one(i, **kwargs)
Trains an individual estimator. See MLForge.train().

Parameters

i [int] The index 0 <= i < n_estimators of the estimator to be trained.

kwargs [dict] Parameters for MLForge.train().

Returns

None

class madminer.ml.MLForge(debug=False)
Bases: object

Estimating likelihood ratios and scores with machine learning.

Each instance of this class represents one neural estimator. The most important functions are:

• MLForge.train() to train an estimator. The keyword method determines the inference technique
and whether a class instance represents a single-parameterized likelihood ratio estimator, a doubly-
parameterized likelihood ratio estimator, or a local score estimator.

• MLForge.evaluate() to evaluate the estimator.

• MLForge.save() to save the trained model to files.

• MLForge.load() to load the trained model from files.

Please see the tutorial for a detailed walk-through.

Parameters

debug [bool, optional] If True, additional detailed debugging output is printed. Default value:
False.

Methods

calculate_fisher_information(x[,
weights, . . .])

Calculates the expected Fisher information matrix
based on the kinematic information in a given num-
ber of events.

evaluate(x[, theta0_filename, . . .]) Evaluates a trained estimator of the log likelihood
ratio (or, if method is ‘sally’ or ‘sallino’, the score).

load(filename) Loads a trained model from files.
Continued on next page

34 Chapter 5. madminer.ml module

MadMiner Documentation, Release 0.2.3

Table 2 – continued from previous page
save(filename[, save_model]) Saves the trained model to four files: a JSON file

with the settings, a pickled pyTorch state dict file,
and numpy files for the mean and variance of the in-
puts (used for input scaling).

train(method, x_filename[, y_filename, . . .]) Trains a neural network to estimate either the like-
lihood ratio or, if method is ‘sally’ or ‘sallino’, the
score.

calculate_fisher_information(x, weights=None, n_events=1)
Calculates the expected Fisher information matrix based on the kinematic information in a given number
of events. Currently only supported for estimators trained with method=’sally’ or method=’sallino’.

Parameters

x [str or ndarray] Sample of observations, or path to numpy file with observations, as saved
by the madminer.sampling.SampleAugmenter functions. Note that this sample has to be
sampled from the reference parameter where the score is estimated with the SALLY /
SALLINO estimator!

weights [None or ndarray, optional] Weights for the observations. If None, all events are
taken to have equal weight. Default value: None.

n_events [float, optional] Expected number of events for which the kinematic Fisher infor-
mation should be calculated. Default value: 1.

Returns

fisher_information [ndarray] Expected kinematic Fisher information matrix with shape
(n_parameters, n_parameters).

evaluate(x, theta0_filename=None, theta1_filename=None, test_all_combinations=True, evalu-
ate_score=False, return_grad_x=False)

Evaluates a trained estimator of the log likelihood ratio (or, if method is ‘sally’ or ‘sallino’, the score).

Parameters

x [str or ndarray] Sample of observations, or path to numpy file with observations, as saved
by the madminer.sampling.SampleAugmenter functions.

theta0_filename [str or None, optional] Path to an unweighted sample of numerator param-
eters, as saved by the madminer.sampling.SampleAugmenter functions. Required if the
estimator was trained with the ‘alice’, ‘alice2’, ‘alices’, ‘alices2’, ‘carl’, ‘carl2’, ‘nde’,
‘rascal’, ‘rascal2’, ‘rolr’, ‘rolr2’, or ‘scandal’ method. Default value: None.

theta1_filename [str or None, optional] Path to an unweighted sample of denominator pa-
rameters, as saved by the madminer.sampling.SampleAugmenter functions. Required if
the estimator was trained with the ‘alice2’, ‘alices2’, ‘carl2’, ‘rascal2’, or ‘rolr2’ method.
Default value: None.

test_all_combinations [bool, optional] If method is not ‘sally’ and not ‘sallino’: If False,
the number of samples in the observable and theta files has to match, and the likelihood
ratio is evaluated only for the combinations r(x_i | theta0_i, theta1_i). If True, r(x_i |
theta0_j, theta1_j) for all pairwise combinations i, j are evaluated. Default value: True.

evaluate_score [bool, optional] If method is not ‘sally’ and not ‘sallino’, this sets whether
in addition to the likelihood ratio the score is evaluated. Default value: False.

return_grad_x [bool, optional] If True, grad_x log r(x) or grad_x t(x) (for ‘sally’ or ‘sallino’
estimators) are returned in addition to the other outputs. Default value: False.

35

MadMiner Documentation, Release 0.2.3

Returns

sally_estimated_score [ndarray] Only returned if the network was trained with
method=’sally’ or method=’sallino’. In this case, an array of the estimator for t(x_i |
theta_ref) is returned for all events i.

log_likelihood_ratio [ndarray] Only returned if the network was trained with nei-
ther method=’sally’ nor method=’sallino’. The estimated log likelihood ratio. If
test_all_combinations is True, the result has shape (n_thetas, n_x). Otherwise, it has shape
(n_samples,).

score_theta0 [ndarray or None] Only returned if the network was trained with neither
method=’sally’ nor method=’sallino’. None if evaluate_score is False. Otherwise the
derived estimated score at theta0. If test_all_combinations is True, the result has shape
(n_thetas, n_x, n_parameters). Otherwise, it has shape (n_samples, n_parameters).

score_theta1 [ndarray or None] Only returned if the network was trained with neither
method=’sally’ nor method=’sallino’. None if evaluate_score is False, or the network was
trained with any method other than ‘alice2’, ‘alices2’, ‘carl2’, ‘rascal2’, or ‘rolr2’. Other-
wise the derived estimated score at theta1. If test_all_combinations is True, the result has
shape (n_thetas, n_x, n_parameters). Otherwise, it has shape (n_samples, n_parameters).

grad_x [ndarray] Only returned if return_grad_x is True.

load(filename)
Loads a trained model from files.

Parameters

filename [str] Path to the files. ‘_settings.json’ and ‘_state_dict.pl’ will be added.

Returns

None

save(filename, save_model=False)
Saves the trained model to four files: a JSON file with the settings, a pickled pyTorch state dict file, and
numpy files for the mean and variance of the inputs (used for input scaling).

Parameters

filename [str] Path to the files. ‘_settings.json’ and ‘_state_dict.pl’ will be added.

save_model [bool, optional] If True, the whole model is saved in addition to the state dict.
This is not necessary for loading it again with MLForge.load(), but can be useful for de-
bugging, for instance to plot the computational graph.

Returns

None

train(method, x_filename, y_filename=None, theta0_filename=None, theta1_filename=None,
r_xz_filename=None, t_xz0_filename=None, t_xz1_filename=None, features=None,
nde_type=’mafmog’, n_hidden=(100, 100), activation=’tanh’, maf_n_mades=3,
maf_batch_norm=False, maf_batch_norm_alpha=0.1, maf_mog_n_components=10,
alpha=1.0, trainer=’amsgrad’, n_epochs=50, batch_size=128, initial_lr=0.001, fi-
nal_lr=0.0001, nesterov_momentum=None, validation_split=None, early_stopping=True,
scale_inputs=True, shuffle_labels=False, grad_x_regularization=None, limit_samplesize=None,
return_first_loss=False)

Trains a neural network to estimate either the likelihood ratio or, if method is ‘sally’ or ‘sallino’, the score.

The keyword method determines the structure of the estimator that an instance of this class represents:

36 Chapter 5. madminer.ml module

MadMiner Documentation, Release 0.2.3

• For ‘alice’, ‘alices’, ‘carl’, ‘nde’, ‘rascal’, ‘rolr’, and ‘scandal’, the neural network models the likeli-
hood ratio as a function of the observables x and the numerator hypothesis theta0, while the denomi-
nator hypothesis is kept at a fixed reference value (“single-parameterized likelihood ratio estimator”).
In addition to the likelihood ratio, the estimator allows to estimate the score at theta0.

• For ‘alice2’, ‘alices2’, ‘carl2’, ‘rascal2’, and ‘rolr2’, the neural network models the likelihood ratio
as a function of the observables x, the numerator hypothesis theta0, and the denominator hypothesis
theta1 (“doubly parameterized likelihood ratio estimator”). The score at theta0 and theta1 can also be
evaluated.

• For ‘sally’ and ‘sallino’, the neural networks models the score evaluated at some reference hypothesis
(“local score regression”). The likelihood ratio cannot be estimated directly from the neural network,
but can be estimated in a second step through density estimation in the estimated score space.

Parameters

method [str] The inference method used. Allows values are ‘alice’, ‘alices’, ‘carl’, ‘nde’,
‘rascal’, ‘rolr’, and ‘scandal’ for a single-parameterized likelihood ratio estimator; ‘al-
ice2’, ‘alices2’, ‘carl2’, ‘rascal2’, and ‘rolr2’ for a doubly-parameterized likelihood ratio
estimator; and ‘sally’ and ‘sallino’ for local score regression.

x_filename [str] Path to an unweighted sample of observations, as saved by the mad-
miner.sampling.SampleAugmenter functions. Required for all inference methods.

y_filename [str or None, optional] Path to an unweighted sample of class labels, as saved
by the madminer.sampling.SampleAugmenter functions. Required for the ‘alice’, ‘alice2’,
‘alices’, ‘alices2’, ‘carl’, ‘carl2’, ‘rascal’, ‘rascal2’, ‘rolr’, and ‘rolr2’ methods. Default
value: None.

theta0_filename [str or None, optional] Path to an unweighted sample of numerator param-
eters, as saved by the madminer.sampling.SampleAugmenter functions. Required for the
‘alice’, ‘alice2’, ‘alices’, ‘alices2’, ‘carl’, ‘carl2’, ‘nde’, ‘rascal’, ‘rascal2’, ‘rolr’, ‘rolr2’,
and ‘scandal’ methods. Default value: None.

theta1_filename [str or None, optional] Path to an unweighted sample of denominator pa-
rameters, as saved by the madminer.sampling.SampleAugmenter functions. Required for
the ‘alice2’, ‘alices2’, ‘carl2’, ‘rascal2’, and ‘rolr2’ methods. Default value: None.

r_xz_filename [str or None, optional] Path to an unweighted sample of joint likelihood ra-
tios, as saved by the madminer.sampling.SampleAugmenter functions. Required for the
‘alice’, ‘alice2’, ‘alices’, ‘alices2’, ‘rascal’, ‘rascal2’, ‘rolr’, and ‘rolr2’ methods. Default
value: None.

t_xz0_filename [str or None, optional] Path to an unweighted sample of joint scores at
theta0, as saved by the madminer.sampling.SampleAugmenter functions. Required for the
‘alices’, ‘alices2’, ‘rascal’, ‘rascal2’, ‘sallino’, ‘sally’, and ‘scandal’ methods. Default
value: None.

t_xz1_filename [str or None, optional] Path to an unweighted sample of joint scores at
theta1, as saved by the madminer.sampling.SampleAugmenter functions. Required for the
‘rascal2’ and ‘alices2’ methods. Default value: None.

features [list of int or None, optional] Indices of observables (features) that are used as input
to the neural networks. If None, all observables are used. Default value: None.

nde_type [{‘maf’, ‘mafmog’}, optional] If the method is ‘nde’ or ‘scandal’, nde_type de-
termines the architecture used in the neural density estimator. Currently supported are
‘maf’ for a Masked Autoregressive Flow with a Gaussian base density, or ‘mafmog’ for
a Masked Autoregressive Flow with a mixture of Gaussian base densities. Default value:
‘mafmog’.

37

MadMiner Documentation, Release 0.2.3

n_hidden [tuple of int, optional] Units in each hidden layer in the neural networks. If
method is ‘nde’ or ‘scandal’, this refers to the setup of each individual MADE layer. De-
fault value: (100, 100).

activation [{‘tanh’, ‘sigmoid’, ‘relu’}, optional] Activation function. Default value: ‘tanh’.

maf_n_mades [int, optional] If method is ‘nde’ or ‘scandal’, this sets the number of MADE
layers. Default value: 3.

maf_batch_norm [bool, optional] If method is ‘nde’ or ‘scandal’, switches batch normal-
ization layers after each MADE layer on or off. Default: False.

maf_batch_norm_alpha [float, optional] If method is ‘nde’ or ‘scandal’ and
maf_batch_norm is True, this sets the alpha parameter in the calculation of the
running average of the mean and variance. Default value: 0.1.

maf_mog_n_components [int, optional] If method is ‘nde’ or ‘scandal’ and nde_type is
‘mafmog’, this sets the number of Gaussian base components. Default value: 10.

alpha [float, optional] Hyperparameter weighting the score error in the loss function of the
‘alices’, ‘alices2’, ‘rascal’, ‘rascal2’, and ‘scandal’ methods. Default value: 1.

trainer [{“adam”, “amsgrad”, “sgd”}, optional] Optimization algorithm. Default value:
“amsgrad”.

n_epochs [int, optional] Number of epochs. Default value: 50.

batch_size [int, optional] Batch size. Default value: 128.

initial_lr [float, optional] Learning rate during the first epoch, after which it exponentially
decays to final_lr. Default value: 0.001.

final_lr [float, optional] Learning rate during the last epoch. Default value: 0.0001.

nesterov_momentum [float or None, optional] If trainer is “sgd”, sets the Nesterov mo-
mentum. Default value: None.

validation_split [float or None, optional] Fraction of samples used for validation and early
stopping (if early_stopping is True). If None, the entire sample is used for training and
early stopping is deactivated. Default value: None.

early_stopping [bool, optional] Activates early stopping based on the validation loss (only
if validation_split is not None). Default value: True.

scale_inputs [bool, optional] Scale the observables to zero mean and unit variance. Default
value: True.

shuffle_labels [bool, optional] If True, the labels (y, r_xz, t_xz) are shuffled, while the ob-
servations (x) remain in their normal order. This serves as a closure test, in particular
as cross-check against overfitting: an estimator trained with shuffle_labels=True should
predict to likelihood ratios around 1 and scores around 0.

grad_x_regularization [float or None, optional] If not None, a term of the form
grad_x_regularization * |grad_x f(x)|^2 is added to the loss, where f(x) is the neural net-
work output (the estimated log likelihood ratio or score). Default value: None.

limit_samplesize [int or None, optional] If not None, only this number of samples (events)
is used to train the estimator. Default value: None.

return_first_loss [bool, optional] If True, the training routine only proceeds until the loss is
calculated for the first time, at which point the loss tensor is returned. This can be useful
for debugging or visualization purposes (but of course not for training a model).

Returns

38 Chapter 5. madminer.ml module

MadMiner Documentation, Release 0.2.3

None

39

MadMiner Documentation, Release 0.2.3

40 Chapter 5. madminer.ml module

CHAPTER 6

madminer.morphing module

class madminer.morphing.Morpher(parameters_from_madminer=None, parame-
ter_max_power=None, parameter_range=None)

Bases: object

Morphing functionality for theory parameters. Morphing is a technique that allows MadMax to infer the full
probability distribution p(x_i | theta) for each simulated event x_i and any theta, not just the benchmarks.

For a typical MadMiner application, it is not necessary to use the morphing classes directly. The other MadMiner
classes use the morphing functions “under the hood” when needed. Only for an isolated study of the morphing
setup (e.g. to optimize the morphing basis), the Morpher class itself may be of interest.

A typical morphing basis setup involves the following steps:

• The instance of the class is initialized with the parameter setup. The user can provide the parameters either
in the format of MadMiner.parameters. Alternatively, human-friendly lists of the key properties can be
provided.

• The function find_components can be used to find the relevant components, i.e. individual terms contribut-
ing to the squared matrix elements (alternatively they can be defined by the user with set_components()).

• The final step is the definition of the morphing basis, i.e. the benchmark points for which the squared
matrix element will be evaluated before interpolating to other parameter points. Again the user can pick
this basis manually with set_basis(). Alternatively, this class provides a basic optimization routine for the
basis choice in optimize_basis().

The class also provides helper functions that are important for working with morphing:

• calculate_morphing_matrix() calculates the morphing matrix, i.e. the matrix that links the morphing basis to the
components.

• calculate_morphing_weights() calculates the morphing weights w_b(theta) for a given parameter point
theta such that p(theta) = sum_b w_b(theta) p(theta_b).

• calculate_morphing_weight_gradient() calculates the gradient of the morphing weights, grad_theta
w_b(theta).

Note that this class only implements the “theory morphing” (or, more specifically, “EFT morphing”) of the
physics parameters of interest. Nuisance parameter morphing is implemented in the NuisanceMorpher class.

41

MadMiner Documentation, Release 0.2.3

Parameters

parameters_from_madminer [OrderedDict or None, optional] Parameters in the Mad-
Miner.parameters convention. OrderedDict with keys equal to the parameter names
and values equal to tuples (LHA_block, LHA_ID, morphing_max_power, param_min,
param_max)

parameter_max_power [None or list of int or list of tuple of int, optional] Only used if param-
eters_from_madminer is None. Maximal power with which each parameter contributes to
the squared matrix element. If tuples are given, gives this maximal power for each of several
operator configurations. Typically at tree level, this maximal number is 2 for parameters that
affect one vertex (e.g. only production or only decay of a particle), and 4 for parameters that
affect two vertices (e.g. production and decay).

parameter_range [None or list of tuple of float, optional] Only used if parame-
ters_from_madminer is None. Parameter range (param_min, param_max) for each parame-
ter.

Methods

calculate_morphing_matrix([basis]) Calculates the morphing matrix that links the com-
ponents to the basis benchmarks.

calculate_morphing_weight_gradient(theta[,
. . .])

Calculates the gradient of the morphing weights,
grad_i w_b(theta).

calculate_morphing_weights(theta[, basis,
. . .])

Calculates the morphing weights w_b(theta) for a
given morphing basis {theta_b}.

evaluate_morphing([basis, morphing_matrix,
. . .])

Evaluates the expected sum of the squared morphing
weights for a given basis.

find_components([max_overall_power]) Finds the components, i.e.
optimize_basis([n_bases, . . .]) Optimizes the morphing basis.
set_basis([basis_from_madminer, . . .]) Manually sets the basis benchmarks.
set_components(components) Manually defines the components, i.e.

calculate_morphing_matrix(basis=None)
Calculates the morphing matrix that links the components to the basis benchmarks.

Parameters

basis [ndarray or None, optional] Manually specified morphing basis for which the morph-
ing matrix is calculated. This array has shape (n_basis_benchmarks, n_parameters). If
None, the basis from the last call of set_basis() or find_basis() is used. Default value:
None.

Returns

morphing_matrix [ndarray] Morphing matrix with shape (n_basis_benchmarks,
n_components)

calculate_morphing_weight_gradient(theta, basis=None, morphing_matrix=None)
Calculates the gradient of the morphing weights, grad_i w_b(theta).

Parameters

theta [ndarray] Parameter point theta with shape (n_parameters,).

basis [ndarray or None, optional] Manually specified morphing basis for which the weights
are calculated. This array has shape (n_basis_benchmarks, n_parameters). If None, the

42 Chapter 6. madminer.morphing module

MadMiner Documentation, Release 0.2.3

basis from the last call of set_basis() or find_basis() is used. Default value: None.

morphing_matrix [ndarray or None, optional] Manually specified morphing matrix for the
given morphing basis. This array has shape (n_basis_benchmarks, n_components). If
None, the morphing matrix is calculated automatically. Default value: None.

Returns

morphing_weight_gradients [ndarray] Morphing weights as an array with shape
(n_parameters, n_basis_benchmarks,), where the first component refers to the gradient
direction.

calculate_morphing_weights(theta, basis=None, morphing_matrix=None)
Calculates the morphing weights w_b(theta) for a given morphing basis {theta_b}.

Parameters

theta [ndarray] Parameter point theta with shape (n_parameters,).

basis [ndarray or None, optional] Manually specified morphing basis for which the weights
are calculated. This array has shape (n_basis_benchmarks, n_parameters). If None, the
basis from the last call of set_basis() or find_basis() is used. Default value: None.

morphing_matrix [ndarray or None, optional] Manually specified morphing matrix for the
given morphing basis. This array has shape (n_basis_benchmarks, n_components). If
None, the morphing matrix is calculated automatically. Default value: None.

Returns

morphing_weights [ndarray] Morphing weights as an array with shape
(n_basis_benchmarks,).

evaluate_morphing(basis=None, morphing_matrix=None, n_test_thetas=100, re-
turn_weights_and_thetas=False)

Evaluates the expected sum of the squared morphing weights for a given basis.

Parameters

basis [ndarray or None, optional] Manually specified morphing basis for which the weights
are calculated. This array has shape (n_basis_benchmarks, n_parameters). If None, the
basis from the last call of set_basis() or find_basis() is used. Default value: None.

morphing_matrix [ndarray or None, optional] Manually specified morphing matrix for the
given morphing basis. This array has shape (n_basis_benchmarks, n_components). If
None, the morphing matrix is calculated automatically. Default value: None.

n_test_thetas [int, optional] Number of random parameter points used to evaluate the ex-
pected mean squared morphing weights. A larger number will increase the run time of the
optimization, but lead to better results. Default value: 100.

return_weights_and_thetas [bool, optional] If True, results for each evaluation theta are
returned, rather than taking their average. Default value: False.

Returns

thetas_test [ndarray] Random parameter points used for evaluation. Only returned if re-
turn_weights_and_thetas=True is used.

squared_weights [ndarray] Squared summed morphing weights at each evaluation param-
eter point. Only returned if return_weights_and_thetas=True is used.

negative_expected_sum_squared_weights [float] Negative expected sum of the square of
the morphing weights. Objective function in the optimization. Only returned with re-
turn_weights_and_thetas=False.

43

MadMiner Documentation, Release 0.2.3

find_components(max_overall_power=4)
Finds the components, i.e. the individual terms contributing to the squared matrix element.

Parameters

max_overall_power [int or tuple of int, optional] The maximal sum of powers of all pa-
rameters contributing to the squared matrix element. If a tuple is given, gives the maximal
sum of powers for each of several operator configurations (see constructor). Typically, if
parameters can affect the couplings at n vertices, this number is 2n. Default value: 4.

Returns

components [ndarray] Array with shape (n_components, n_parameters), where each entry
gives the power with which a parameter scales a given component.

optimize_basis(n_bases=1, fixed_benchmarks_from_madminer=None,
fixed_benchmarks_numpy=None, n_trials=100, n_test_thetas=100)

Optimizes the morphing basis. If either fixed_benchmarks_from_maxminer or fixed_benchmarks_numpy
are not None, then these will be used as fixed basis points and only the remaining part of the basis will be
optimized.

Parameters

n_bases [int, optional] The number of morphing bases generated. If n_bases > 1, multiple
bases are combined, and the weights for each basis are reduced by a factor 1 / n_bases.
Currently only the default choice of 1 is fully implemented. Do not use any other value
for now. Default value: 1.

fixed_benchmarks_from_madminer [OrderedDict or None, optional] Input basis vectors
in the MadMiner.benchmarks conventions. Default value: None.

fixed_benchmarks_numpy [ndarray or None, optional] Input basis vectors as a ndarray
with shape (n_fixed_basis_points, n_parameters). Default value: None.

n_trials [int, optional] Number of random basis configurations tested in the optimization
procedure. A larger number will increase the run time of the optimization, but lead to
better results. Default value: 100.

n_test_thetas [int, optional] Number of random parameter points used to evaluate the ex-
pected mean squared morphing weights. A larger number will increase the run time of the
optimization, but lead to better results. Default value: 100.

Returns

basis [OrderedDict or ndarray] Optimized basis in the same format (MadMiner or numpy)
as the parameters provided during instantiation.

set_basis(basis_from_madminer=None, basis_numpy=None, morphing_matrix=None)
Manually sets the basis benchmarks.

Parameters

basis_from_madminer [OrderedDict or None, optional] Basis in the Mad-
Miner.benchmarks conventions. Default value: None.

basis_numpy [ndarray or None, optional] Only used if basis_from_madminer is None. Ba-
sis as a ndarray with shape (n_components, n_parameters).

morphing_matrix [ndarray or None, optional] Manually provided morphing matrix. If
None, the morphing matrix is calculated automatically. Default value: None.

Returns

None

44 Chapter 6. madminer.morphing module

MadMiner Documentation, Release 0.2.3

set_components(components)
Manually defines the components, i.e. the individual terms contributing to the squared matrix element.

Parameters

components [ndarray] Array with shape (n_components, n_parameters), where each entry
gives the power with which a parameter scales a given component. For instance, a typical
signal, interference, background situation with one parameter might be described by the
components [[2], [1], [0]].

Returns

None

class madminer.morphing.NuisanceMorpher(nuisance_parameters_from_madminer, bench-
mark_names, reference_benchmark)

Bases: object

Morphing functionality for nuisance parameters.

For a typical MadMiner application, it is not necessary to use the morphing classes directly. The other MadMiner
classes use the morphing functions “under the hood” when needed.

Parameters

nuisance_parameters_from_madminer [OrderedDict] Nuisance parameters defined in
the form {name: (benchmark_name_pos, benchmark_name_neg)}. Here bench-
mark_name_pos refers to the name of the benchmark with nu_i = 1, while bench-
mark_name_neg is either None or refers to the name of the benchmark with nu_i = -1.

benchmark_names [list] The names of the benchmarks.

reference_benchmark [str] Name of the reference benchmark.

Methods

calculate_a(benchmark_weights) Calculates the first-order coefficients a_i(x) in
dsigma(x | theta, nu) / dsigma(x | theta, 0) = exp[
sum_i (a_i(x) nu_i + b_i(x) nu_i(x)^2)].

calculate_b(benchmark_weights) Calculates the second-order coefficients b_i(x) in
dsigma(x | theta, nu) / dsigma(x | theta, 0) = exp[
sum_i (a_i(x) nu_i + b_i(x) nu_i(x)^2)].

calculate_nuisance_factors(. . .) Calculates the rescaling of the event weights from
non-central values of nuisance parameters.

calculate_a(benchmark_weights)
Calculates the first-order coefficients a_i(x) in dsigma(x | theta, nu) / dsigma(x | theta, 0) = exp[sum_i
(a_i(x) nu_i + b_i(x) nu_i(x)^2)].

Parameters

benchmark_weights [ndarray] Event weights dsigma(x | theta_i, nu_i) with shape
(n_events, n_benchmarks). The benchmarks are expected to be sorted in the same or-
der as the keyword benchmark_names used during initialization, and the nuisance bench-
marks are expected to be rescaled to have the same physics parameters theta as the refer-
ence_benchmark given during initialization.

Returns

45

MadMiner Documentation, Release 0.2.3

a [ndarray] Coefficients a_i(x) with shape (n_nuisance_parameters, n_events).

calculate_b(benchmark_weights)
Calculates the second-order coefficients b_i(x) in dsigma(x | theta, nu) / dsigma(x | theta, 0) = exp[sum_i
(a_i(x) nu_i + b_i(x) nu_i(x)^2)].

Parameters

benchmark_weights [ndarray] Event weights dsigma(x | theta_i, nu_i) with shape
(n_events, n_benchmarks). The benchmarks are expected to be sorted in the same or-
der as the keyword benchmark_names used during initialization, and the nuisance bench-
marks are expected to be rescaled to have the same physics parameters theta as the refer-
ence_benchmark given during initialization.

Returns

b [ndarray] Coefficients b_i(x) with shape (n_nuisance_parameters, n_events).

calculate_nuisance_factors(nuisance_parameters, benchmark_weights)
Calculates the rescaling of the event weights from non-central values of nuisance parameters.

Parameters

nuisance_parameters [ndarray] Values of the nuisance parameters nu, with shape
(n_nuisance_parameters,).

benchmark_weights [ndarray] Event weights dsigma(x | theta_i, nu_i) with shape
(n_events, n_benchmarks). The benchmarks are expected to be sorted in the same or-
der as the keyword benchmark_names used during initialization, and the nuisance bench-
marks are expected to be rescaled to have the same physics parameters theta as the refer-
ence_benchmark given during initialization.

Returns

nuisance_factors [ndarray] Nuisance factor dsigma(x | theta, nu) / dsigma(x | theta, 0) with
shape (n_events,).

46 Chapter 6. madminer.morphing module

CHAPTER 7

madminer.plotting module

madminer.plotting.plot_2d_morphing_basis(morpher, xlabel=’$\\theta_0$’, yla-
bel=’$\\theta_1$’, xrange=(-1.0, 1.0), yrange=(-
1.0, 1.0), crange=(1.0, 100.0), resolution=100)

Visualizes a morphing basis and morphing errors for problems with a two-dimensional parameter space.

Parameters

morpher [Morpher] Morpher instance with defined basis.

xlabel [str, optional] Label for the x axis. Default value: r’$ heta_0$’.

ylabel [str, optional] Label for the y axis. Default value: r’$ heta_1$’.

xrange [tuple of float, optional] Range (min, max) for the x axis. Default value: (-1., 1.).

yrange [tuple of float, optional] Range (min, max) for the y axis. Default value: (-1., 1.).

crange [tuple of float, optional] Range (min, max) for the color map. Default value: (1., 100.).

resolution [int, optional] Number of points per axis for the rendering of the squared morphing
weights. Default value: 100.

Returns

figure [Figure] Plot as Matplotlib Figure instance.

madminer.plotting.plot_distribution_of_information(xbins, xsecs,
fisher_information_matrices,
fisher_information_matrices_aux=None,
xlabel=None, xmin=None,
xmax=None, log_xsec=False,
norm_xsec=True, epsilon=1e-09)

Plots the distribution of the cross section together with the distribution of the Fisher information.

Parameters

xbins [list of float] Bin boundaries.

xsecs [list of float] Cross sections (in pb) per bin.

47

MadMiner Documentation, Release 0.2.3

fisher_information_matrices [list of ndarray] Fisher information matrices for each bin.

fisher_information_matrices_aux [list of ndarray or None, optional] Additional Fisher infor-
mation matrices for each bin (will be plotted with a dashed line).

xlabel [str or None, optional] Label for the x axis.

xmin [float or None, optional] Minimum value for the x axis.

xmax [float or None, optional] Maximum value for the x axis.

log_xsec [bool, optional] Whether to plot the cross section on a logarithmic y axis.

norm_xsec [bool, optional] Whether the cross sections are normalized to 1.

epsilon [float, optional] Numerical factor.

Returns

figure [Figure] Plot as Matplotlib Figure instance.

madminer.plotting.plot_distributions(filename, observables=None, parameter_points=None,
uncertainties=’nuisance’, nuisance_parameters=None,
draw_nuisance_toys=None, normalize=False,
log=False, observable_labels=None, n_bins=50,
line_labels=None, colors=None, linestyles=None,
linewidths=1.5, toy_linewidths=1.0, alpha=0.25,
toy_alpha=0.75, n_events=None, n_toys=100,
n_cols=3)

Plots one-dimensional histograms of observables in a MadMiner file for a given set of benchmarks.

Parameters

filename [str] Filename of a MadMiner HDF5 file.

observables [list of str or None, optional] Which observables to plot, given by a list of their
names. If None, all observables in the file are plotted. Default value: None.

parameter_points [list of (str or ndarray) or None, optional] Which parameter points to use for
histogramming the data. Given by a list, each element can either be the name of a benchmark
in the MadMiner file, or an ndarray specifying any parameter point in a morphing setup.
If None, all physics (non-nuisance) benchmarks defined in the MadMiner file are plotted.
Default value: None.

uncertainties [{“nuisance”, “none”}, optional] Defines how uncertainty bands are drawn. With
“nuisance”, the variation in cross section from all nuisance parameters is added in quadra-
ture. With “none”, no error bands are drawn.

nuisance_parameters [None or list of int, optional] If uncertainties is “nuisance”, this can
restrict which nuisance parameters are used to draw the uncertainty bands. Each entry of
this list is the index of one nuisance parameter (same order as in the MadMiner file).

draw_nuisance_toys [None or int, optional] If not None and uncertainties is “nuisance”, sets
the number of nuisance toy distributions that are drawn (in addition to the error bands).

normalize [bool, optional] Whether the distribution is normalized to the total cross section.
Default value: False.

log [bool, optional] Whether to draw the y axes on a logarithmic scale. Defaul value: False.

observable_labels [None or list of (str or None), optional] x-axis labels naming the observables.
If None, the observable names from the MadMiner file are used. Default value: None.

n_bins [int, optional] Number of histogram bins. Default value: 50.

48 Chapter 7. madminer.plotting module

MadMiner Documentation, Release 0.2.3

line_labels [None or list of (str or None), optional] Labels for the different parameter points. If
None and if parameter_points is None, the benchmark names from the MadMiner file are
used. Default value: None.

colors [None or str or list of str, optional] Matplotlib line (and error band) colors for the distri-
butions. If None, uses default colors. Default value: None.

linestyles [None or str or list of str, optional] Matplotlib line styles for the distributions. If
None, uses default linestyles. Default value: None.

linewidths [float or list of float, optional] Line widths for the contours. Default value: 1.5.

toy_linewidths [float or list of float or None, optional] Line widths for the toy replicas, if un-
certainties is “nuisance” and draw_nuisance_toys is not None. If None, linewidths is used.
Default value: 1.

alpha [float, optional] alpha value for the uncertainty bands. Default value: 0.25.

toy_alpha [float, optional] alpha value for the toy replicas, if uncertainties is “nuisance” and
draw_nuisance_toys is not None. Default value: 0.75.

n_events [None or int, optional] If not None, sets the number of events from the MadMiner file
that will be analyzed and plotted. Default value: None.

n_toys [int, optional] Number of toy nuisance parameter vectors used to estimate the systematic
uncertainties. Default value: 100.

n_cols [int, optional] Number of columns of subfigures in the plot. Default value: 3.

Returns

figure [Figure] Plot as Matplotlib Figure instance.

madminer.plotting.plot_fisher_information_contours_2d(fisher_information_matrices,
fisher_information_covariances=None,
reference_thetas=None,
contour_distance=1.0,
xlabel=’$\\theta_0$’,
ylabel=’$\\theta_1$’,
xrange=(-1.0, 1.0), yrange=(-
1.0, 1.0), labels=None,
inline_labels=None,
resolution=500, col-
ors=None, linestyles=None,
linewidths=1.5, alphas=1.0,
alphas_uncertainties=0.25)

Visualizes 2x2 Fisher information matrices as contours of constant Fisher distance from a reference point theta0.

The local (tangent-space) approximation is used: distances d(theta) are given by d(theta)^2 = (theta - theta0)_i
I_ij (theta - theta0)_j, summing over i and j.

Parameters

fisher_information_matrices [list of ndarray] Fisher information matrices, each with shape
(2,2).

fisher_information_covariances [None or list of (ndarray or None), optional] Covari-
ance matrices for the Fisher information matrices. Has to have the same length as
fisher_information_matrices, and each entry has to be None (no uncertainty) or a tensor
with shape (2,2,2,2). Default value: None.

reference_thetas [None or list of (ndarray or None), optional] Reference points from which the
distances are calculated. If None, the origin (0,0) is used. Default value: None.

49

MadMiner Documentation, Release 0.2.3

contour_distance [float, optional.] Distance threshold at which the contours are drawn. Default
value: 1.

xlabel [str, optional] Label for the x axis. Default value: r’$ heta_0$’.

ylabel [str, optional] Label for the y axis. Default value: r’$ heta_1$’.

xrange [tuple of float, optional] Range (min, max) for the x axis. Default value: (-1., 1.).

yrange [tuple of float, optional] Range (min, max) for the y axis. Default value: (-1., 1.).

labels [None or list of (str or None), optional] Legend labels for the contours. Default value:
None.

inline_labels [None or list of (str or None), optional] Inline labels for the contours. Default
value: None.

resolution [int] Number of points per axis for the calculation of the distances. Default value:
500.

colors [None or str or list of str, optional] Matplotlib line (and error band) colors for the con-
tours. If None, uses default colors. Default value: None.

linestyles [None or str or list of str, optional] Matploitlib line styles for the contours. If None,
uses default linestyles. Default value: None.

linewidths [float or list of float, optional] Line widths for the contours. Default value: 1.5.

alphas [float or list of float, optional] Opacities for the contours. Default value: 1.

alphas_uncertainties [float or list of float, optional] Opacities for the error bands. Default
value: 0.25.

Returns

figure [Figure] Plot as Matplotlib Figure instance.

madminer.plotting.plot_fisherinfo_barplot(fisher_information_matrices, labels, determi-
nant_indices=None, eigenvalue_colors=None,
bar_colors=None)

Parameters

fisher_information_matrices [list of ndarray] Fisher information matrices

labels [list of str] Labels for the x axis

determinant_indices [list of int or None, optional] If not None, the determinants will be based
only on the indices given here. Default value: None.

eigenvalue_colors [None or list of str] Colors for the eigenvalue decomposition. If None, de-
fault colors are used. Default value: None.

bar_colors [None or list of str] Colors for the determinant bars. If None, default colors are
used. Default value: None.

Returns

figure [Figure] Plot as Matplotlib Figure instance.

madminer.plotting.plot_nd_morphing_basis_scatter(morpher, crange=(1.0, 100.0),
n_test_thetas=1000)

Visualizes a morphing basis and morphing errors with scatter plots between each pair of operators.

Parameters

morpher [Morpher] Morpher instance with defined basis.

50 Chapter 7. madminer.plotting module

MadMiner Documentation, Release 0.2.3

crange [tuple of float, optional] Range (min, max) for the color map. Default value: (1. 100.).

n_test_thetas [int, optional] Number of random points evaluated. Default value: 1000.

Returns

figure [Figure] Plot as Matplotlib Figure instance.

madminer.plotting.plot_nd_morphing_basis_slices(morpher, crange=(1.0, 100.0), resolu-
tion=50)

Visualizes a morphing basis and morphing errors with two-dimensional slices through parameter space.

Parameters

morpher [Morpher] Morpher instance with defined basis.

crange [tuple of float, optional] Range (min, max) for the color map.

resolution [int, optional] Number of points per panel and axis for the rendering of the squared
morphing weights. Default value: 50.

Returns

figure [Figure] Plot as Matplotlib Figure instance.

51

MadMiner Documentation, Release 0.2.3

52 Chapter 7. madminer.plotting module

CHAPTER 8

madminer.sampling module

class madminer.sampling.SampleAugmenter(filename, disable_morphing=False, in-
clude_nuisance_parameters=True, debug=False)

Bases: object

Sampling and data augmentation.

After the generated events have been analyzed and the observables and weights have been saved into a MadMiner
file, for instance with madminer.delphes.DelphesProcessor or madminer.lhe.LHEProcessor, the next step is
typically the generation of training and evaluation data for the machine learning algorithms. This generally
involves two (related) tasks: unweighting, i.e. the creation of samples that do not carry individual weights but
follow some distribution, and the extraction of the joint likelihood ratio and / or joint score (the “augmented
data”).

After inializing SampleAugmenter with the filename of a MadMiner file, this is done with a single function call.
Depending on the downstream inference algorithm, there are different possibilities:

• SampleAugmenter.extract_samples_train_plain() creates plain training samples without augmented data.

• SampleAugmenter.extract_samples_train_local() creates training samples for local methods based on the
score, such as SALLY and SALLINO.

• SampleAugmenter.extract_samples_train_global() creates training samples for non-local methods based
on density estimation and the score, such as SCANDAL.

• SampleAugmenter.extract_samples_train_ratio() creates training samples for non-local, ratio-based meth-
ods like RASCAL or ALICE.

• SampleAugmenter.extract_samples_train_more_ratios() does the same, but can extract joint ratios and
scores at more parameter points. This additional information can be used efficiently in the setup with
a “doubly parameterized” likelihood ratio estimator that models the dependence on both the numerator
and denominator hypothesis.

• SampleAugmenter.extract_samples_test() creates evaluation samples for all methods.

Please see the tutorial for a walkthrough.

For the curious, let us explain these steps in a little bit more detail (assuming a morphing setup):

53

MadMiner Documentation, Release 0.2.3

• The sample augmentation step starts from a set of events (x_i, z_i) together with corresponding weights
for each morphing basis point theta_b, p(x_i, z_i | theta_b).

• Morphing: Assume we want to generate data sampled from a parameter point theta, which is not necessar-
ily one of the basis points theta_b. Using the morphing structure, the event weights for p(x_i, z_i | theta)
can be calculated. Note that the events (phase-space points) (x_i, z_i) are not changed, only their weights.

• Unweighting: For the machine learning part, such a weighted event sample is not practical. Instead we
aim for an unweighted one, in which events can appear multiple times. If the user request N events
(which can be larger than the original number of events in the MadGraph runs), SampleAugmenter will
draw N samples (x_i, z_i) from the discrete distribution p(x_i, z_i | theta). In other words, it draws (with
replacement) N of the original events from MadGraph, with probabilities given by the morphing setup
before. This is similar to what np.random.choice() does.

• Augmentation: For each of the drawn samples, the morphing setup can be used to calculate the joint
likelihood ratio and / or the joint score (this depends on which SampleAugmenter function is called).

Parameters

filename [str] Path to MadMiner file (for instance the output of mad-
miner.delphes.DelphesProcessor.save()).

disable_morphing [bool, optional] If True, the morphing setup is not loaded from the file.
Default value: False.

include_nuisance_parameters [bool, optional] If True, nuisance parameters are taken into ac-
count. Default value: True.

debug [bool, optional] If True, additional detailed debugging output is printed. Default value:
False.

Methods

extract_cross_sections(theta) Calculates the total cross sections for all specified
thetas.

extract_raw_data([theta, derivative]) Returns all events together with the benchmark
weights (if theta is None) or weights for a given
theta.

extract_samples_test(theta, n_samples, . . .) Extracts evaluation samples x ~ p(x|theta) without
any augmented data.

extract_samples_train_global(theta,
. . . [, . . .])

Extracts training samples x ~ p(x|theta) as well as the
joint score t(x, z|theta), where theta is sampled from
a prior.

extract_samples_train_local(theta, . . . [,
. . .])

Extracts training samples x ~ p(x|theta) as well as the
joint score t(x, z|theta).

extract_samples_train_more_ratios(theta0,
. . .)

Extracts training samples x ~ p(x|theta0) and x ~
p(x|theta1) together with the class label y, the joint
likelihood ratio r(x,z|theta0, theta1), and the joint
score t(x,z|theta0).

extract_samples_train_plain(theta, . . . [,
. . .])

Extracts plain training samples x ~ p(x|theta) without
any augmented data.

Continued on next page

54 Chapter 8. madminer.sampling module

MadMiner Documentation, Release 0.2.3

Table 1 – continued from previous page
extract_samples_train_ratio(theta0,
theta1, . . .)

Extracts training samples x ~ p(x|theta0) and x ~
p(x|theta1) together with the class label y, the joint
likelihood ratio r(x,z|theta0, theta1), and, if morph-
ing is set up, the joint score t(x,z|theta0).

extract_cross_sections(theta)
Calculates the total cross sections for all specified thetas.

Parameters

theta [tuple] Tuple (type, value) that defines the parameter point or prior over parame-
ter points at which the cross section is calculated. Pass the output of the functions
constant_benchmark_theta(), multiple_benchmark_thetas(), constant_morphing_theta(),
multiple_morphing_thetas(), or random_morphing_thetas().

Returns

thetas [ndarray] Parameter points with shape (n_thetas, n_parameters).

xsecs [ndarray] Total cross sections in pb with shape (n_thetas,).

xsec_uncertainties [ndarray] Statistical uncertainties on the total cross sections in pb with
shape (n_thetas,).

extract_raw_data(theta=None, derivative=False)
Returns all events together with the benchmark weights (if theta is None) or weights for a given theta.

Parameters

theta [None or ndarray or str, optional] If None, the function returns all benchmark weights.
If str, the function returns the weights for a given benchmark name. If ndarray, it uses
morphing to calculate the weights for this value of theta. Default value: None.

derivative [bool, optional] If True and if theta is not None, the derivative of the weights with
respect to theta are returned. Default value: False.

Returns

x [ndarray] Observables with shape (n_unweighted_samples, n_observables).

weights [ndarray] If theta is None and derivative is False, benchmark weights with shape
(n_unweighted_samples, n_benchmarks_phys) in pb. If theta is not None and derivative is
True, the gradient of the weight for the given parameter with respect to theta with shape
(n_unweighted_samples, n_gradients) in pb. Otherwise, weights for the given parameter
theta with shape (n_unweighted_samples,) in pb.

extract_samples_test(theta, n_samples, folder, filename, test_split=0.5,
switch_train_test_events=False)

Extracts evaluation samples x ~ p(x|theta) without any augmented data.

Parameters

theta [tuple] Tuple (type, value) that defines the parameter point or prior over parameter
points for the sampling. Pass the output of the functions constant_benchmark_theta(),
multiple_benchmark_thetas(), constant_morphing_theta(), multiple_morphing_thetas(),
or random_morphing_thetas().

n_samples [int] Total number of events to be drawn.

folder [str] Path to the folder where the resulting samples should be saved (ndarrays in .npy
format).

55

MadMiner Documentation, Release 0.2.3

filename [str] Filenames for the resulting samples. A prefix such as ‘x’ or ‘theta0’ as well
as the extension ‘.npy’ will be added automatically.

test_split [float or None, optional] Fraction of events reserved for the evaluation sample
(that will not be used for any training samples). Default value: 0.5.

switch_train_test_events [bool, optional] If True, this function generates a test sample from
the events normally reserved for training samples. Default value: False.

Returns

x [ndarray] Observables with shape (n_samples, n_observables). The same information is
saved as a file in the given folder.

theta [ndarray] Parameter points used for sampling with shape (n_samples, n_parameters).
The same information is saved as a file in the given folder.

extract_samples_train_global(theta, n_samples, folder, filename, test_split=0.5,
switch_train_test_events=False)

Extracts training samples x ~ p(x|theta) as well as the joint score t(x, z|theta), where theta is sampled from
a prior. This can be used for inference methods such as SCANDAL.

Parameters

theta [tuple] Tuple (type, value) that defines the numerator parameter point or
prior over parameter points for the sampling. Pass the output of the functions
constant_benchmark_theta(), multiple_benchmark_thetas(), constant_morphing_theta(),
multiple_morphing_thetas(), or random_morphing_thetas().

n_samples [int] Total number of events to be drawn.

folder [str] Path to the folder where the resulting samples should be saved (ndarrays in .npy
format).

filename [str] Filenames for the resulting samples. A prefix such as ‘x’ or ‘theta0’ as well
as the extension ‘.npy’ will be added automatically.

test_split [float or None, optional] Fraction of events reserved for the evaluation sample
(that will not be used for any training samples). Default value: 0.5.

switch_train_test_events [bool, optional] If True, this function generates a training sample
from the events normally reserved for test samples. Default value: False.

Returns

x [ndarray] Observables with shape (n_samples, n_observables). The same information is
saved as a file in the given folder.

theta [ndarray] Parameter points used for sampling (and evaluation of the joint score) with
shape (n_samples, n_parameters). The same information is saved as a file in the given
folder.

t_xz [ndarray] Joint score evaluated at theta with shape (n_samples, n_parameters). The
same information is saved as a file in the given folder.

extract_samples_train_local(theta, n_samples, folder, filename, nuisance_score=False,
test_split=0.5, switch_train_test_events=False,
log_message=True)

Extracts training samples x ~ p(x|theta) as well as the joint score t(x, z|theta). This can be used for inference
methods such as SALLY and SALLINO.

Parameters

56 Chapter 8. madminer.sampling module

MadMiner Documentation, Release 0.2.3

theta [tuple] Tuple (type, value) that defines the parameter point for the sampling.
This is also where the score is evaluated. Pass the output of the functions con-
stant_benchmark_theta() or constant_morphing_theta().

n_samples [int] Total number of events to be drawn.

folder [str] Path to the folder where the resulting samples should be saved (ndarrays in .npy
format).

filename [str] Filenames for the resulting samples. A prefix such as ‘x’ or ‘theta0’ as well
as the extension ‘.npy’ will be added automatically.

nuisance_score [bool, optional] If True and if the sample contains nuisance parameters,
the score with respect to the nuisance parameters (at the default position) will also be
calculated. Otherwise, only the score with respect to the physics parameters is calculated.
Default: False.

test_split [float or None, optional] Fraction of events reserved for the evaluation sample
(that will not be used for any training samples). Default value: 0.5.

switch_train_test_events [bool, optional] If True, this function generates a training sample
from the events normally reserved for test samples. Default value: False.

log_message [bool, optional] If True, logging output. This option is only designed for in-
ternal use.

Returns

x [ndarray] Observables with shape (n_samples, n_observables). The same information is
saved as a file in the given folder.

theta [ndarray] Parameter points used for sampling (and evaluation of the joint score) with
shape (n_samples, n_parameters). The same information is saved as a file in the given
folder.

t_xz [ndarray] Joint score evaluated at theta with shape (n_samples, n_parameters +
n_nuisance_parameters) (if nuisance_score is True) or (n_samples, n_parameters). The
same information is saved as a file in the given folder.

extract_samples_train_more_ratios(theta0, theta1, n_samples, folder, file-
name, additional_thetas=None, test_split=0.5,
switch_train_test_events=False)

Extracts training samples x ~ p(x|theta0) and x ~ p(x|theta1) together with the class label y, the joint
likelihood ratio r(x,z|theta0, theta1), and the joint score t(x,z|theta0). This information can be used in
inference methods such as CARL, ROLR, CASCAL, and RASCAL.

With the keyword additional_thetas, this function allows to extract joint ratios and scores at more parame-
ter points than just theta0 and theta1. This additional information can be used efficiently in the setup with
a “doubly parameterized” likelihood ratio estimator that models the dependence on both the numerator and
denominator hypothesis.

Parameters

theta0 : Tuple (type, value) that defines the numerator parameter point or prior over param-
eter points for the sampling. Pass the output of the functions constant_benchmark_theta(),
multiple_benchmark_thetas(), constant_morphing_theta(), multiple_morphing_thetas(),
or random_morphing_thetas().

theta1 : Tuple (type, value) that defines the denominator parameter point or prior
over parameter points for the sampling. Pass the output of the functions
constant_benchmark_theta(), multiple_benchmark_thetas(), constant_morphing_theta(),
multiple_morphing_thetas(), or random_morphing_thetas().

57

MadMiner Documentation, Release 0.2.3

n_samples [int] Total number of events to be drawn.

folder [str] Path to the folder where the resulting samples should be saved (ndarrays in .npy
format).

filename [str] Filenames for the resulting samples. A prefix such as ‘x’ or ‘theta0’ as well
as the extension ‘.npy’ will be added automatically.

additional_thetas [list of tuple or None] list of tuples (type, value) that defines additional
theta points at which ratio and score are evaluated, and which are then used to cre-
ate additional training data points. These can be efficiently used only in the “doubly
parameterized” setup where a likelihood ratio estimator models the dependence of the
likelihood ratio on both the numerator and denominator hypothesis. Pass the output
of the helper functions constant_benchmark_theta(), multiple_benchmark_thetas(), con-
stant_morphing_theta(), multiple_morphing_thetas(), or random_morphing_thetas(). De-
fault value: None.

test_split [float or None, optional] Fraction of events reserved for the evaluation sample
(that will not be used for any training samples). Default value: 0.5.

switch_train_test_events [bool, optional] If True, this function generates a training sample
from the events normally reserved for test samples. Default value: False.

Returns

x [ndarray] Observables with shape (n_samples, n_observables). The same information is
saved as a file in the given folder.

theta0 [ndarray] Numerator parameter points with shape (n_samples, n_parameters). The
same information is saved as a file in the given folder.

theta1 [ndarray] Denominator parameter points with shape (n_samples, n_parameters). The
same information is saved as a file in the given folder.

y [ndarray] Class label with shape (n_samples, n_parameters). y=0 (1) for events sample
from the numerator (denominator) hypothesis. The same information is saved as a file in
the given folder.

r_xz [ndarray] Joint likelihood ratio with shape (n_samples,). The same information is saved
as a file in the given folder.

t_xz [ndarray] Joint score evaluated at theta0 with shape (n_samples, n_parameters). The
same information is saved as a file in the given folder.

extract_samples_train_plain(theta, n_samples, folder, filename, test_split=0.5,
switch_train_test_events=False)

Extracts plain training samples x ~ p(x|theta) without any augmented data. This can be use for standard
inference methods such as ABC, histograms of observables, or neural density estimation techniques. It
can also be used to create validation or calibration samples.

Parameters

theta [tuple] Tuple (type, value) that defines the parameter point or prior over parameter
points for the sampling. Pass the output of the functions constant_benchmark_theta(),
multiple_benchmark_thetas(), constant_morphing_theta(), multiple_morphing_thetas(),
or random_morphing_thetas().

n_samples [int] Total number of events to be drawn.

folder [str] Path to the folder where the resulting samples should be saved (ndarrays in .npy
format).

58 Chapter 8. madminer.sampling module

MadMiner Documentation, Release 0.2.3

filename [str] Filenames for the resulting samples. A prefix such as ‘x’ or ‘theta0’ as well
as the extension ‘.npy’ will be added automatically.

test_split [float or None, optional] Fraction of events reserved for the evaluation sample
(that will not be used for any training samples). Default value: 0.5.

switch_train_test_events [bool, optional] If True, this function generates a training sample
from the events normally reserved for test samples. Default value: False.

Returns

x [ndarray] Observables with shape (n_samples, n_observables). The same information is
saved as a file in the given folder.

theta [ndarray] Parameter points used for sampling with shape (n_samples, n_parameters).
The same information is saved as a file in the given folder.

extract_samples_train_ratio(theta0, theta1, n_samples, folder, filename, test_split=0.5,
switch_train_test_events=False)

Extracts training samples x ~ p(x|theta0) and x ~ p(x|theta1) together with the class label y, the joint like-
lihood ratio r(x,z|theta0, theta1), and, if morphing is set up, the joint score t(x,z|theta0). This information
can be used in inference methods such as CARL, ROLR, CASCAL, and RASCAL.

Parameters

theta0 [tuple] Tuple (type, value) that defines the numerator parameter point or
prior over parameter points for the sampling. Pass the output of the functions
constant_benchmark_theta(), multiple_benchmark_thetas(), constant_morphing_theta(),
multiple_morphing_thetas(), or random_morphing_thetas().

theta1 [tuple] Tuple (type, value) that defines the denominator parameter point or
prior over parameter points for the sampling. Pass the output of the functions
constant_benchmark_theta(), multiple_benchmark_thetas(), constant_morphing_theta(),
multiple_morphing_thetas(), or random_morphing_thetas().

n_samples [int] Total number of events to be drawn.

folder [str] Path to the folder where the resulting samples should be saved (ndarrays in .npy
format).

filename [str] Filenames for the resulting samples. A prefix such as ‘x’ or ‘theta0’ as well
as the extension ‘.npy’ will be added automatically.

test_split [float or None, optional] Fraction of events reserved for the evaluation sample
(that will not be used for any training samples). Default value: 0.5.

switch_train_test_events [bool, optional] If True, this function generates a training sample
from the events normally reserved for test samples. Default value: False.

Returns

x [ndarray] Observables with shape (n_samples, n_observables). The same information is
saved as a file in the given folder.

theta0 [ndarray] Numerator parameter points with shape (n_samples, n_parameters). The
same information is saved as a file in the given folder.

theta1 [ndarray] Denominator parameter points with shape (n_samples, n_parameters). The
same information is saved as a file in the given folder.

y [ndarray] Class label with shape (n_samples, n_parameters). y=0 (1) for events sample
from the numerator (denominator) hypothesis. The same information is saved as a file in
the given folder.

59

MadMiner Documentation, Release 0.2.3

r_xz [ndarray] Joint likelihood ratio with shape (n_samples,). The same information is saved
as a file in the given folder.

t_xz [ndarray or None] If morphing is set up, the joint score evaluated at theta0 with shape
(n_samples, n_parameters). The same information is saved as a file in the given folder. If
morphing is not set up, None is returned (and no file is saved).

madminer.sampling.combine_and_shuffle(input_filenames, output_filename, k_factors=None,
overwrite_existing_file=True, debug=False)

Combines multiple MadMiner files into one, and shuffles the order of the events.

Note that this function assumes that all samples are generated with the same setup, including identical bench-
marks (and thus morphing setup). If it is used with samples with different settings, there will be wrong results!
There are no explicit cross checks in place yet!

Parameters

input_filenames [list of str] List of paths to the input MadMiner files.

output_filename [str] Path to the combined MadMiner file.

k_factors [float or list of float, optional] Multiplies the weights in input_filenames with a uni-
versal factor (if k_factors is a float) or with independent factors (if it is a list of float). Default
value: None.

overwrite_existing_file [bool, optional] If True and if the output file exists, it is overwritten.
Default value: True.

debug [bool, optional] If True, additional detailed debugging output is printed. Default value:
False.

Returns

None

madminer.sampling.constant_benchmark_theta(benchmark_name)
Utility function to be used as input to various SampleAugmenter functions, specifying a single parameter bench-
mark.

Parameters

benchmark_name [str] Name of the benchmark (as in mad-
miner.core.MadMiner.add_benchmark)

Returns

output [tuple] Input to various SampleAugmenter functions

madminer.sampling.constant_morphing_theta(theta)
Utility function to be used as input to various SampleAugmenter functions, specifying a single parameter point
theta in a morphing setup.

Parameters

theta [ndarray or list] Parameter point with shape (n_parameters,)

Returns

output [tuple] Input to various SampleAugmenter functions

madminer.sampling.multiple_benchmark_thetas(benchmark_names)
Utility function to be used as input to various SampleAugmenter functions, specifying multiple parameter bench-
marks.

Parameters

60 Chapter 8. madminer.sampling module

MadMiner Documentation, Release 0.2.3

benchmark_names [list of str] List of names of the benchmarks (as in mad-
miner.core.MadMiner.add_benchmark)

Returns

output [tuple] Input to various SampleAugmenter functions

madminer.sampling.multiple_morphing_thetas(thetas)
Utility function to be used as input to various SampleAugmenter functions, specifying multiple parameter points
theta in a morphing setup.

Parameters

thetas [ndarray or list of lists or list of ndarrays] Parameter points with shape (n_thetas,
n_parameters)

Returns

output [tuple] Input to various SampleAugmenter functions

madminer.sampling.random_morphing_thetas(n_thetas, priors)
Utility function to be used as input to various SampleAugmenter functions, specifying random parameter points
sampled from a prior in a morphing setup.

Parameters

n_thetas [int] Number of parameter points to be sampled

priors [list of tuples] Priors for each parameter is characterized by a tuple of the form
(prior_shape, prior_param_0, prior_param_1). Currently, the supported prior_shapes are
flat, in which case the two other parameters are the lower and upper bound of the flat prior,
and gaussian, in which case they are the mean and standard deviation of a Gaussian.

Returns

output [tuple] Input to various SampleAugmenter functions

61

MadMiner Documentation, Release 0.2.3

62 Chapter 8. madminer.sampling module

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

63

MadMiner Documentation, Release 0.2.3

64 Chapter 9. Indices and tables

Python Module Index

m
madminer.core, 1
madminer.delphes, 9
madminer.fisherinformation, 15
madminer.lhe, 23
madminer.ml, 29
madminer.morphing, 41
madminer.plotting, 47
madminer.sampling, 53

65

MadMiner Documentation, Release 0.2.3

66 Python Module Index

Index

A
add_benchmark() (madminer.core.MadMiner method), 2
add_cut() (madminer.delphes.DelphesProcessor method),

10
add_cut() (madminer.lhe.LHEProcessor method), 24
add_default_observables() (mad-

miner.delphes.DelphesProcessor method),
10

add_default_observables() (madminer.lhe.LHEProcessor
method), 24

add_estimator() (madminer.ml.EnsembleForge method),
30

add_observable() (madminer.delphes.DelphesProcessor
method), 11

add_observable() (madminer.lhe.LHEProcessor method),
25

add_observable_from_function() (mad-
miner.delphes.DelphesProcessor method),
12

add_observable_from_function() (mad-
miner.lhe.LHEProcessor method), 25

add_parameter() (madminer.core.MadMiner method), 2
add_sample() (madminer.delphes.DelphesProcessor

method), 12
add_sample() (madminer.lhe.LHEProcessor method), 26
analyse_delphes_samples() (mad-

miner.delphes.DelphesProcessor method),
13

analyse_samples() (madminer.lhe.LHEProcessor
method), 26

C
calculate_a() (madminer.morphing.NuisanceMorpher

method), 45
calculate_b() (madminer.morphing.NuisanceMorpher

method), 46
calculate_expectation() (madminer.ml.EnsembleForge

method), 30
calculate_fisher_information() (mad-

miner.ml.EnsembleForge method), 31
calculate_fisher_information() (madminer.ml.MLForge

method), 35
calculate_fisher_information_full_detector() (mad-

miner.fisherinformation.FisherInformation
method), 16

calculate_fisher_information_full_truth() (mad-
miner.fisherinformation.FisherInformation
method), 17

calculate_fisher_information_hist1d() (mad-
miner.fisherinformation.FisherInformation
method), 18

calculate_fisher_information_hist2d() (mad-
miner.fisherinformation.FisherInformation
method), 18

calculate_fisher_information_nuisance_constraints()
(madminer.fisherinformation.FisherInformation
method), 19

calculate_fisher_information_rate() (mad-
miner.fisherinformation.FisherInformation
method), 19

calculate_morphing_matrix() (mad-
miner.morphing.Morpher method), 42

calculate_morphing_weight_gradient() (mad-
miner.morphing.Morpher method), 42

calculate_morphing_weights() (mad-
miner.morphing.Morpher method), 43

calculate_nuisance_factors() (mad-
miner.morphing.NuisanceMorpher method),
46

combine_and_shuffle() (in module madminer.sampling),
60

constant_benchmark_theta() (in module mad-
miner.sampling), 60

constant_morphing_theta() (in module mad-
miner.sampling), 60

D
DelphesProcessor (class in madminer.delphes), 9

67

MadMiner Documentation, Release 0.2.3

E
EnsembleForge (class in madminer.ml), 29
evaluate() (madminer.ml.EnsembleForge method), 32
evaluate() (madminer.ml.MLForge method), 35
evaluate_morphing() (madminer.morphing.Morpher

method), 43
extract_cross_sections() (mad-

miner.sampling.SampleAugmenter method),
55

extract_observables_and_weights() (mad-
miner.fisherinformation.FisherInformation
method), 20

extract_raw_data() (mad-
miner.fisherinformation.FisherInformation
method), 20

extract_raw_data() (mad-
miner.sampling.SampleAugmenter method),
55

extract_samples_test() (mad-
miner.sampling.SampleAugmenter method),
55

extract_samples_train_global() (mad-
miner.sampling.SampleAugmenter method),
56

extract_samples_train_local() (mad-
miner.sampling.SampleAugmenter method),
56

extract_samples_train_more_ratios() (mad-
miner.sampling.SampleAugmenter method),
57

extract_samples_train_plain() (mad-
miner.sampling.SampleAugmenter method),
58

extract_samples_train_ratio() (mad-
miner.sampling.SampleAugmenter method),
59

F
find_components() (madminer.morphing.Morpher

method), 43
FisherInformation (class in madminer.fisherinformation),

15

H
histogram_of_fisher_information() (mad-

miner.fisherinformation.FisherInformation
method), 20

L
LHEProcessor (class in madminer.lhe), 23
load() (madminer.core.MadMiner method), 3
load() (madminer.ml.EnsembleForge method), 33
load() (madminer.ml.MLForge method), 36

M
MadMiner (class in madminer.core), 1
madminer.core (module), 1
madminer.delphes (module), 9
madminer.fisherinformation (module), 15
madminer.lhe (module), 23
madminer.ml (module), 29
madminer.morphing (module), 41
madminer.plotting (module), 47
madminer.sampling (module), 53
MLForge (class in madminer.ml), 34
Morpher (class in madminer.morphing), 41
multiple_benchmark_thetas() (in module mad-

miner.sampling), 60
multiple_morphing_thetas() (in module mad-

miner.sampling), 61

N
NuisanceMorpher (class in madminer.morphing), 45

O
optimize_basis() (madminer.morphing.Morpher method),

44

P
plot_2d_morphing_basis() (in module mad-

miner.plotting), 47
plot_distribution_of_information() (in module mad-

miner.plotting), 47
plot_distributions() (in module madminer.plotting), 48
plot_fisher_information_contours_2d() (in module mad-

miner.plotting), 49
plot_fisherinfo_barplot() (in module madminer.plotting),

50
plot_nd_morphing_basis_scatter() (in module mad-

miner.plotting), 50
plot_nd_morphing_basis_slices() (in module mad-

miner.plotting), 51
profile_information() (in module mad-

miner.fisherinformation), 21
project_information() (in module mad-

miner.fisherinformation), 21

R
random_morphing_thetas() (in module mad-

miner.sampling), 61
reset_cuts() (madminer.delphes.DelphesProcessor

method), 13
reset_cuts() (madminer.lhe.LHEProcessor method), 26
reset_observables() (mad-

miner.delphes.DelphesProcessor method),
13

reset_observables() (madminer.lhe.LHEProcessor
method), 26

68 Index

MadMiner Documentation, Release 0.2.3

run() (madminer.core.MadMiner method), 3
run_delphes() (madminer.delphes.DelphesProcessor

method), 13
run_multiple() (madminer.core.MadMiner method), 4

S
SampleAugmenter (class in madminer.sampling), 53
save() (madminer.core.MadMiner method), 5
save() (madminer.delphes.DelphesProcessor method), 13
save() (madminer.lhe.LHEProcessor method), 26
save() (madminer.ml.EnsembleForge method), 33
save() (madminer.ml.MLForge method), 36
set_acceptance() (madminer.delphes.DelphesProcessor

method), 14
set_basis() (madminer.morphing.Morpher method), 44
set_benchmarks() (madminer.core.MadMiner method), 5
set_components() (madminer.morphing.Morpher

method), 44
set_morphing() (madminer.core.MadMiner method), 6
set_parameters() (madminer.core.MadMiner method), 6
set_smearing() (madminer.lhe.LHEProcessor method),

27
set_systematics() (madminer.core.MadMiner method), 7

T
train() (madminer.ml.MLForge method), 36
train_all() (madminer.ml.EnsembleForge method), 33
train_one() (madminer.ml.EnsembleForge method), 34

Index 69

	madminer.core module
	madminer.delphes module
	madminer.fisherinformation module
	madminer.lhe module
	madminer.ml module
	madminer.morphing module
	madminer.plotting module
	madminer.sampling module
	Indices and tables
	Python Module Index

