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madminer.core module


	
class madminer.core.MadMiner(debug=False)

	Bases: object

The central class to manage parameter spaces, benchmarks, and the generation of events through MadGraph and
Pythia.

An instance of this class is the starting point of most MadMiner applications. It is typically used in four steps:


	Defining the parameter space through MadMiner.add_parameter


	Defining the benchmarks, i.e. the points at which the squared matrix elements will be evaluated in MadGraph, with
MadMiner.add_benchmark() or, if operator morphing is used, with MadMiner.set_benchmarks_from_morphing()


	Saving this setup with MadMiner.save() (it can be loaded in a new instance with MadMiner.load())


	Running MadGraph and Pythia with the appropriate settings with MadMiner.run() or MadMiner.run_multiple() (the
latter allows the user to combine runs from multiple run cards and sampling points)




Please see the tutorial for a hands-on introduction to its methods.


	Parameters

	
	debugbool, optional

	If True, additional detailed debugging output is printed. Default value: False.









Methods







	add_benchmark(parameter_values[, benchmark_name])

	Manually adds an individual benchmark, that is, a parameter point that will be evaluated by MadGraph.



	add_parameter(lha_block, lha_id[, …])

	Adds an individual parameter.



	load(filename[, disable_morphing])

	Loads MadMiner setup from a file.



	run(mg_directory, proc_card_file, …[, …])

	High-level function that creates the the MadGraph process, all required cards, and prepares or runs the event generation for one combination of cards.



	run_multiple(mg_directory, proc_card_file, …)

	High-level function that creates the the MadGraph process, all required cards, and prepares or runs the event generation for multiple combinations of run_cards or importance samplings (sample_benchmarks).



	save(filename)

	Saves MadMiner setup into a file.



	set_benchmarks([benchmarks])

	Manually sets all benchmarks, that is, parameter points that will be evaluated by MadGraph.



	set_morphing([max_overall_power, n_bases, …])

	Sets up the morphing environment.



	set_parameters([parameters])

	Manually sets all parameters, overwriting previously added parameters.



	set_systematics([scale_variation, scales, …])

	Prepares the simulation of the effect of different nuisance parameters, including scale variations and PDF changes.







	
add_benchmark(parameter_values, benchmark_name=None)

	Manually adds an individual benchmark, that is, a parameter point that will be evaluated by MadGraph.

If this command is called before


	Parameters

	
	parameter_valuesdict

	The keys of this dict should be the parameter names and the values the corresponding parameter values.



	benchmark_namestr or None, optional

	Name of benchmark. If None, a default name is used. Default value: None.







	Returns

	
	None

	





	Raises

	
	RuntimeError

	If a benchmark with the same name already exists, if parameter_values is not a dict, or if a key of
parameter_values does not correspond to a defined parameter.














	
add_parameter(lha_block, lha_id, parameter_name=None, param_card_transform=None, morphing_max_power=2, parameter_range=(0.0, 1.0))

	Adds an individual parameter.


	Parameters

	
	lha_blockstr

	The name of the LHA block as used in the param_card. Case-sensitive.



	lha_idint

	The LHA id as used in the param_card.



	parameter_namestr or None

	An internal name for the parameter. If None, a the default ‘benchmark_i’ is used.



	morphing_max_powerint or tuple of int

	The maximal power with which this parameter contributes to the
squared matrix element of the process of interest. If a tuple is given, gives this
maximal power for each of several operator configurations. Typically at tree level,
this maximal number is 2 for parameters that affect one vertex (e.g. only production
or only decay of a particle), and 4 for parameters that affect two vertices (e.g.
production and decay). Default value: 2.



	param_card_transformNone or str

	Represents a one-parameter function mapping the parameter
(“theta”) to the value that should be written in the parameter cards. This
str is parsed by Python’s eval() function, and “theta” is parsed as the
parameter value. Default value: None.



	parameter_rangetuple of float

	The range of parameter values of primary interest. Only affects the
basis optimization. Default value: (0., 1.).







	Returns

	
	None

	












	
load(filename, disable_morphing=False)

	Loads MadMiner setup from a file. All parameters, benchmarks, and morphing settings are overwritten. See save
for more details.


	Parameters

	
	filenamestr

	Path to the MadMiner file.



	disable_morphingbool, optional

	If True, the morphing setup is not loaded from the file. Default value: False.







	Returns

	
	None

	












	
run(mg_directory, proc_card_file, param_card_template_file, run_card_file=None, mg_process_directory=None, pythia8_card_file=None, sample_benchmark=None, is_background=False, only_prepare_script=False, ufo_model_directory=None, log_directory=None, temp_directory=None, initial_command=None)

	High-level function that creates the the MadGraph process, all required cards, and prepares or runs the event
generation for one combination of cards.

If only_prepare_scripts=True, the event generation is not run
directly, but a bash script is created in <process_folder>/madminer/run.sh that will start the event
generation with the correct settings.

High-level function that creates the the MadGraph process, all required cards, and prepares or runs the event
generation for multiple combinations of run_cards or importance samplings (sample_benchmarks).

If only_prepare_scripts=True, the event generation is not run
directly, but a bash script is created in <process_folder>/madminer/run.sh that will start the event
generation with the correct settings.


	Parameters

	
	mg_directorystr

	Path to the MadGraph 5 base directory.



	proc_card_filestr

	Path to the process card that tells MadGraph how to generate the process.



	param_card_template_filestr

	Path to a param card that will be used as template to create the
appropriate param cards for these runs.



	run_card_filestr

	Paths to the MadGraph run card. If None, the default run_card is used.



	mg_process_directorystr or None, optional

	Path to the MG process directory. If None, MadMiner uses ./MG_process. Default value: None.



	pythia8_card_filestr or None, optional

	Path to the MadGraph Pythia8 card. If None, the card present in the process folder is used.
Default value: None.



	sample_benchmarklist of str or None, optional

	Lists the names of benchmarks that should be used to sample events. A different sampling does not change
the expected differential cross sections, but will change which regions of phase space have many events
(small variance) or few events (high variance). If None, the benchmark added first is used. Default value:
None.



	is_backgroundbool, optional

	Should be True for background processes, i.e. process in which the differential cross section does not
depend on the parameters (i.e. is the same for all benchmarks). In this case, no reweighting is run, which
can substantially speed up the event generation. Default value: False.



	only_prepare_scriptbool, optional

	If True, the event generation is not started, but instead a run.sh script is created in the process
directory. Default value: False.



	only_prepare_scriptbool, optional

	If True, MadGraph is not executed, but instead a run.sh script is created in
the process directory. Default value: False.



	ufo_model_directorystr or None, optional

	Path to an UFO model directory that should be used, but is not yet installed in mg_directory/models. The
model will be copied to the MadGraph model directory before the process directory is generated. (Default
value = None.



	log_directorystr or None, optional

	Directory for log files with the MadGraph output. If None, ./logs is used. Default value: None.



	temp_directorystr or None, optional

	Path to a temporary directory. If None, a system default is used. Default value: None.



	initial_commandstr or None, optional

	Initial shell commands that have to be executed before MG is run (e.g. to load a virtual environment).
Default value: None.







	Returns

	
	None

	












	
run_multiple(mg_directory, proc_card_file, param_card_template_file, run_card_files, mg_process_directory=None, pythia8_card_file=None, sample_benchmarks=None, is_background=False, only_prepare_script=False, ufo_model_directory=None, log_directory=None, temp_directory=None, initial_command=None)

	High-level function that creates the the MadGraph process, all required cards, and prepares or runs the event
generation for multiple combinations of run_cards or importance samplings (sample_benchmarks).

If only_prepare_scripts=True, the event generation is not run
directly, but a bash script is created in <process_folder>/madminer/run.sh that will start the event
generation with the correct settings.


	Parameters

	
	mg_directorystr

	Path to the MadGraph 5 base directory.



	proc_card_filestr

	Path to the process card that tells MadGraph how to generate the process.



	param_card_template_filestr

	Path to a param card that will be used as template to create the appropriate param cards for these runs.



	run_card_fileslist of str

	Paths to the MadGraph run card.



	mg_process_directorystr or None, optional

	Path to the MG process directory. If None, MadMiner uses ./MG_process. Default value: None.



	pythia8_card_filestr, optional

	Path to the MadGraph Pythia8 card. If None, the card present in the process folder
is used. Default value: None.



	sample_benchmarkslist of str or None, optional

	Lists the names of benchmarks that should be used to sample events. A different sampling does not change
the expected differential cross sections, but will change which regions of phase space have many events
(small variance) or few events (high variance). If None, a run is started for each of the benchmarks, which
should map out all regions of phase space well. Default value: None.



	is_backgroundbool, optional

	Should be True for background processes, i.e. process in which the differential cross section does not
depend on the parameters (i.e. is the same for all benchmarks). In this case, no reweighting is run, which
can substantially speed up the event generation. Default value: False.



	only_prepare_scriptbool, optional

	If True, the event generation is not started, but instead a run.sh script is created in the process
directory. Default value: False.



	only_prepare_scriptbool, optional

	If True, MadGraph is not executed, but instead a run.sh script is created in
the process directory. Default value: False.



	ufo_model_directorystr or None, optional

	Path to an UFO model directory that should be used, but is not yet installed in mg_directory/models. The
model will be copied to the MadGraph model directory before the process directory is generated. (Default
value = None)



	log_directorystr or None, optional

	Directory for log files with the MadGraph output. If None, ./logs is used. Default value: None.



	temp_directorystr or None, optional

	Path to a temporary directory. If None, a system default is used. Default value: None.



	initial_commandstr or None, optional

	Initial shell commands that have to be executed before MG is run (e.g. to load a virtual environment).
Default value: None.







	Returns

	
	None

	












	
save(filename)

	Saves MadMiner setup into a file.

The file format follows the HDF5 standard. The saved information includes:


	the parameter definitions,


	the benchmark points,


	the systematics setup (if defined), and


	the morphing setup (if defined).




This file is an important input to later stages in the analysis chain, including the processing of generated
events, extraction of training samples, and calculation of Fisher information matrices. In these downstream
tasks, additional information will be written to the MadMiner file, including the observations and event
weights.


	Parameters

	
	filenamestr

	Path to the MadMiner file.







	Returns

	
	None

	












	
set_benchmarks(benchmarks=None)

	Manually sets all benchmarks, that is, parameter points that will be evaluated by MadGraph. Calling this
function overwrites all previously defined benchmarks.


	Parameters

	
	benchmarksdict or list or None, optional

	Specifies all benchmarks. If None, all benchmarks are reset. If dict, the keys are the benchmark names and
the values are dicts of the form {parameter_name:value}. If list, the entries are dicts
{parameter_name:value} (and the benchmark names are chosen automatically). Default value: None.







	Returns

	
	None

	












	
set_morphing(max_overall_power=4, n_bases=1, include_existing_benchmarks=True, n_trials=100, n_test_thetas=100)

	Sets up the morphing environment.

Sets benchmarks, i.e. parameter points that will be evaluated by MadGraph, for a morphing algorithm, and
calculates all information required for morphing. Morphing is a technique that allows MadMax to infer the full
probability distribution p(x_i | theta) for each simulated event x_i and any theta, not just the
benchmarks.

The morphing basis is optimized with respect to the expected mean squared morphing weights over the parameter
region of interest. If keep_existing_benchmarks=True, benchmarks defined previously will be incorporated in the
morphing basis and only the remaining basis points will be optimized.

Note that any subsequent call to set_benchmarks or add_benchmark will overwrite the morphing setup. The
correct order is therefore to manually define benchmarks first, using set_benchmarks or add_benchmark, and
then to create the morphing setup and complete the basis by calling
set_benchmarks_from_morphing(keep_existing_benchmarks=True).


	Parameters

	
	max_overall_powerint or tuple of int, optional

	The maximal sum of powers of all parameters contributing to the squared matrix element. If a tuple is given,
gives the maximal sum of powers for each of several operator configurations (see add_parameter).
Typically, if parameters can affect the couplings at n vertices, this number is 2n. Default value: 4.



	n_basesint, optional

	The number of morphing bases generated. If n_bases > 1, multiple bases are combined, and the
weights for each basis are reduced by a factor 1 / n_bases. Currently only the default choice of 1 is
fully implemented. Do not use any other value for now. Default value: 1.



	include_existing_benchmarksbool, optional

	If True, the previously defined benchmarks are included in the morphing basis. In that case, the number of
free parameters in the optimization routine is reduced. If False, the existing benchmarks will still be
simulated, but are not part of the morphing routine. Default value: True.



	n_trialsint, optional

	Number of random basis configurations tested in the optimization procedure. A larger number will increase
the run time of the optimization, but lead to better results. Default value: 100.



	n_test_thetasint, optional

	Number of random parameter points used to evaluate the expected mean squared morphing weights. A larger
number will increase the run time of the optimization, but lead to better results. Default value: 100.







	Returns

	
	None

	












	
set_parameters(parameters=None)

	Manually sets all parameters, overwriting previously added parameters.


	Parameters

	
	parametersdict or list or None, optional

	If parameters is None, resets parameters. If parameters is an dict, the keys should be str and give the
parameter names, and the values are tuples of the form (LHA_block, LHA_ID, morphing_max_power, param_min,
param_max) or of the form (LHA_block, LHA_ID). If parameters is a list, the items should be tuples of the
form (LHA_block, LHA_ID). Default value: None.







	Returns

	
	None

	












	
set_systematics(scale_variation=None, scales='together', pdf_variation=None)

	Prepares the simulation of the effect of different nuisance parameters, including scale variations and PDF
changes.


	Parameters

	
	scale_variationNone or tuple of float, optional

	If not None, the regularization and / or factorization scales are varied. A tuple like (0.5,1.,2.)
specifies the factors with which they are varied. Default value: None.



	scales{“together”, “independent”, “mur”, “muf”}, optional

	Whether only the regularization scale (“mur”), only the factorization scale (“muf”), both simultanously
(“together”) or both independently (“independent”) are varied. Default value: “together”.



	pdf_variationNone or str, optional

	If not None, the PDFs are varied. The option is passed along to the –pdf option
of MadGraph’s systematics module. See https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Systematics for a
list. The option “CT10” would, as an example, run over all the eigenvectors of the CTEQ10 set.







	Returns

	
	None

	



















          

      

      

    

  

    
      
          
            
  
madminer.delphes module


	
class madminer.delphes.DelphesProcessor(filename)

	Bases: object

Detector simulation with Delphes and simple calculation of observables.

After setting up the parameter space and benchmarks and running MadGraph and Pythia, all of which is organized
in the madminer.core.MadMiner class, the next steps are the simulation of detector effects and the calculation of
observables.  Different tools can be used for these tasks, please feel free to implement the detector simulation and
analysis routine of your choice.

This class provides an example implementation based on Delphes. Its workflow consists of the following steps:


	Initializing the class with the filename of a MadMiner HDF5 file (the output of madminer.core.MadMiner.save())


	Adding one or multiple event samples produced by MadGraph and Pythia in DelphesProcessor.add_sample().


	Running Delphes on the samples that require it through DelphesProcessor.run_delphes().


	Optionally, acceptance cuts for all visible particles can be defined with DelphesProcessor.set_acceptance().


	Defining observables through DelphesProcessor.add_observable() or
DelphesProcessor.add_observable_from_function(). A simple set of default observables is provided in
DelphesProcessor.add_default_observables()


	Optionally, cuts can be set with DelphesProcessor.add_cut()


	Calculating the observables from the Delphes ROOT files with DelphesProcessor.analyse_delphes_samples()


	Saving the results with DelphesProcessor.save()




Please see the tutorial for a detailed walk-through.


	Parameters

	
	filenamestr or None, optional

	Path to MadMiner file (the output of madminer.core.MadMiner.save()). Default value: None.









Methods







	add_cut(definition[, pass_if_not_parsed])

	Adds a cut as a string that can be parsed by Python’s eval() function and returns a bool.



	add_default_observables([n_leptons_max, …])

	Adds a set of simple standard observables: the four-momenta (parameterized as E, pT, eta, phi) of the hardest visible particles, and the missing transverse energy.



	add_observable(name, definition[, required, …])

	Adds an observable as a string that can be parsed by Python’s eval() function.



	add_observable_from_function(name, fn[, …])

	Adds an observable defined through a function.



	add_sample(hepmc_filename, …[, …])

	Adds a sample of simulated events.



	analyse_delphes_samples([generator_truth, …])

	Main function that parses the Delphes samples (ROOT files), checks acceptance and cuts, and extracts the observables and weights.



	reset_cuts()

	Resets all cuts.



	reset_observables()

	Resets all observables.



	run_delphes(delphes_directory, delphes_card)

	Runs the fast detector simulation Delphes on all HepMC samples added so far for which it hasn’t been run yet.



	save(filename_out)

	Saves the observable definitions, observable values, and event weights in a MadMiner file.



	set_acceptance([pt_min_e, pt_min_mu, …])

	Sets acceptance cuts for all visible particles.







	
add_cut(definition, pass_if_not_parsed=False)

	Adds a cut as a string that can be parsed by Python’s eval() function and returns a bool.


	Parameters

	
	definitionstr

	An expression that can be parsed by Python’s eval() function and returns a bool: True for the event
to pass this cut, False for it to be rejected. In the definition, all visible particles can be
used: e, mu, j, a, and l provide lists of electrons, muons, jets, photons, and leptons (electrons
and muons combined), in each case sorted by descending transverse momentum. met provides a missing ET
object. visible and all provide access to the sum of all visible particles and the sum of all visible
particles plus MET, respectively. All these objects are instances of MadMinerParticle, which inherits from
scikit-hep’s [LorentzVector](http://scikit-hep.org/api/math.html#vector-classes). See the link for a
documentation of their properties. In addition, MadMinerParticle have  properties charge and pdg_id,
which return the charge in units of elementary charges (i.e. an electron has e[0].charge = -1.), and the
PDG particle ID. For instance, “len(e) >= 2” requires at least two electrons passing the acceptance cuts,
while “mu[0].charge > 0.” specifies that the hardest muon is positively charged.



	pass_if_not_parsedbool, optional

	Whether the cut is passed if the observable cannot be parsed. Default value: False.







	Returns

	
	None

	












	
add_default_observables(n_leptons_max=2, n_photons_max=2, n_jets_max=2, include_met=True, include_visible_sum=True, include_numbers=True, include_charge=True)

	Adds a set of simple standard observables: the four-momenta (parameterized as E, pT, eta, phi) of the hardest
visible particles, and the missing transverse energy.


	Parameters

	
	n_leptons_maxint, optional

	Number of hardest leptons for which the four-momenta are saved. Default value: 2.



	n_photons_maxint, optional

	Number of hardest photons for which the four-momenta are saved. Default value: 2.



	n_jets_maxint, optional

	Number of hardest jets for which the four-momenta are saved. Default value: 2.



	include_metbool, optional

	Whether the missing energy observables are stored. Default value: True.



	include_visible_sumbool, optional

	Whether observables characterizing the sum of all particles are stored. Default value: True.



	include_numbersbool, optional

	Whether the number of leptons, photons, and jets is saved as observable. Default value: True.



	include_chargebool, optional

	Whether the lepton charge is saved as observable. Default value: True.







	Returns

	
	None

	












	
add_observable(name, definition, required=False, default=None)

	Adds an observable as a string that can be parsed by Python’s eval() function.


	Parameters

	
	namestr

	Name of the observable. Since this name will be used in eval() calls for cuts, this should not contain
spaces or special characters.



	definitionstr

	An expression that can be parsed by Python’s eval() function. As objects, the visible particles can be
used: e, mu, j, a, and l provide lists of electrons, muons, jets, photons, and leptons (electrons
and muons combined), in each case sorted by descending transverse momentum. met provides a missing ET
object. visible and all provide access to the sum of all visible particles and the sum of all visible
particles plus MET, respectively. All these objects are instances of MadMinerParticle, which inherits from
scikit-hep’s [LorentzVector](http://scikit-hep.org/api/math.html#vector-classes). See the link for a
documentation of their properties. In addition, MadMinerParticle have  properties charge and pdg_id,
which return the charge in units of elementary charges (i.e. an electron has e[0].charge = -1.), and the
PDG particle ID. For instance, “abs(j[0].phi() - j[1].phi())” defines the azimuthal angle between the two
hardest jets.



	requiredbool, optional

	Whether the observable is required. If True, an event will only be retained if this observable is
successfully parsed. For instance, any observable involving “j[1]” will only be parsed if there are at
least two jets passing the acceptance cuts. Default value: False.



	defaultfloat or None, optional

	If required=False, this is the placeholder value for observables that cannot be parsed. None is replaced
with np.nan. Default value: None.







	Returns

	
	None

	












	
add_observable_from_function(name, fn, required=False, default=None)

	Adds an observable defined through a function.


	Parameters

	
	namestr

	Name of the observable. Since this name will be used in eval() calls for cuts, this should not contain
spaces or special characters.



	fnfunction

	A function with signature observable(leptons, photons, jets, met) where the input arguments are lists of
MadMinerParticle instances and a float is returned. The function should raise a RuntimeError to signal
that it is not defined.



	requiredbool, optional

	Whether the observable is required. If True, an event will only be retained if this observable is
successfully parsed. For instance, any observable involving “j[1]” will only be parsed if there are at
least two jets passing the acceptance cuts. Default value: False.



	defaultfloat or None, optional

	If required=False, this is the placeholder value for observables that cannot be parsed. None is replaced
with np.nan. Default value: None.







	Returns

	
	None

	












	
add_sample(hepmc_filename, sampled_from_benchmark, is_background=False, delphes_filename=None, lhe_filename=None, k_factor=1.0, weights='delphes')

	Adds a sample of simulated events. A HepMC file (from Pythia) has to be provided always, since some relevant
information is only stored in this file. The user can optionally provide a Delphes file, in this case
run_delphes() does not have to be called.

By default, the weights are read out from the Delphes file and their names from the HepMC file. There are some
issues with current MadGraph versions that lead to Pythia not storing the weights. As work-around, MadMiner
supports reading weights from the LHE file (the observables still come from the Delphes file). To enable this,
use weights=”lhe”.


	Parameters

	
	hepmc_filenamestr

	Path to the HepMC event file (with extension ‘.hepmc’ or ‘.hepmc.gz’).



	sampled_from_benchmarkstr

	Name of the benchmark that was used for sampling in this event file (the keyword sample_benchmark
of madminer.core.MadMiner.run()).



	is_backgroundbool, optional

	Whether the sample is a background sample (i.e. without benchmark reweighting).



	delphes_filenamestr or None, optional

	Path to the Delphes event file (with extension ‘.root’). If None, the user has to call run_delphes(), which
will create this file. Default value: None.



	lhe_filenameNone or str, optional

	Path to the LHE event file (with extension ‘.lhe’ or ‘.lhe.gz’). This is only needed if weights is “lhe”.



	k_factorfloat, optional

	Multiplies the cross sections found in the sample. Default value: 1.



	weights{“delphes”, “lhe”}, optional

	If “delphes”, the weights are read out from the Delphes ROOT file, and their names are taken from the
HepMC file. If “lhe” (and lhe_filename is not None), the weights are taken from the LHE file (and matched
with the observables from the Delphes ROOT file). The “delphes” behaviour is generally better as it
minimizes the risk of mismatching observables and weights, but for some MadGraph and Delphes versions
there are issues with weights not being saved in the HepMC and Delphes ROOT files. In this case, setting
weights to “lhe” and providing the unweighted LHE file from MadGraph may be an easy fix. Default value:
“delphes”.







	Returns

	
	None

	












	
analyse_delphes_samples(generator_truth=False, delete_delphes_files=False, reference_benchmark=None)

	Main function that parses the Delphes samples (ROOT files), checks acceptance and cuts, and extracts
the observables and weights.


	Parameters

	
	generator_truthbool, optional

	If True, the generator truth information (as given out by Pythia) will be parsed. Detector resolution or
efficiency effects will not be taken into account.



	delete_delphes_filesbool, optional

	If True, the Delphes ROOT files will be deleted after extracting the information from them. Default value:
False.



	reference_benchmarkstr or None, optional

	The weights at the nuisance benchmarks will be rescaled to some reference theta benchmark:
dsigma(x|theta_sampling(x),nu) -> dsigma(x|theta_ref,nu) = dsigma(x|theta_sampling(x),nu)
* dsigma(x|theta_ref,0) / dsigma(x|theta_sampling(x),0). This sets the name of the reference benchmark.
If None, the first one will be used. Default value: None.







	Returns

	
	None

	












	
reset_cuts()

	Resets all cuts.






	
reset_observables()

	Resets all observables.






	
run_delphes(delphes_directory, delphes_card, initial_command=None, log_file=None)

	Runs the fast detector simulation Delphes on all HepMC samples added so far for which it hasn’t been run yet.


	Parameters

	
	delphes_directorystr

	Path to the Delphes directory.



	delphes_cardstr

	Path to a Delphes card.



	initial_commandstr or None, optional

	Initial bash commands that have to be executed before Delphes is run (e.g. to load the correct virtual
environment). Default value: None.



	log_filestr or None, optional

	Path to log file in which the Delphes output is saved. Default value: None.







	Returns

	
	None

	












	
save(filename_out)

	Saves the observable definitions, observable values, and event weights in a MadMiner file. The parameter,
benchmark, and morphing setup is copied from the file provided during initialization. Nuisance benchmarks found
in the HepMC file are added.


	Parameters

	
	filename_outstr

	Path to where the results should be saved.







	Returns

	
	None

	












	
set_acceptance(pt_min_e=None, pt_min_mu=None, pt_min_a=None, pt_min_j=None, eta_max_e=None, eta_max_mu=None, eta_max_a=None, eta_max_j=None)

	Sets acceptance cuts for all visible particles. These are taken into account before observables and cuts
are calculated.


	Parameters

	
	pt_min_efloat or None, optional

	Minimum electron transverse momentum in GeV. None means no acceptance cut. Default value: None.



	pt_min_mufloat or None, optional

	Minimum muon transverse momentum in GeV. None means no acceptance cut. Default value: None.



	pt_min_afloat or None, optional

	Minimum photon transverse momentum in GeV. None means no acceptance cut. Default value: None.



	pt_min_jfloat or None, optional

	Minimum jet transverse momentum in GeV. None means no acceptance cut. Default value: None.



	eta_max_efloat or None, optional

	Maximum absolute electron pseudorapidity. None means no acceptance cut. Default value: None.



	eta_max_mufloat or None, optional

	Maximum absolute muon pseudorapidity. None means no acceptance cut. Default value: None.



	eta_max_afloat or None, optional

	Maximum absolute photon pseudorapidity. None means no acceptance cut. Default value: None.



	eta_max_jfloat or None, optional

	Maximum absolute jet pseudorapidity. None means no acceptance cut. Default value: None.







	Returns

	
	None

	



















          

      

      

    

  

    
      
          
            
  
madminer.fisherinformation module


	
class madminer.fisherinformation.FisherInformation(filename, include_nuisance_parameters=True, debug=False)

	Bases: object

Functions to calculate expected Fisher information matrices.

After inializing a FisherInformation instance with the filename of a MadMiner file, different information matrices
can be calculated:


	FisherInformation.calculate_fisher_information_full_truth() calculates the full truth-level Fisher information.
This is the information in an idealized measurement where all parton-level particles with their charges, flavours,
and four-momenta can be accessed with perfect accuracy.


	FisherInformation.calculate_fisher_information_full_detector() calculates the full Fisher information in
realistic detector-level observations, estimated with neural networks. In addition to the MadMiner file, this
requires a trained SALLY or SALLINO estimator as well as an unweighted evaluation sample.


	FisherInformation.calculate_fisher_information_rate() calculates the Fisher information in the total cross
section.


	FisherInformation.calculate_fisher_information_hist1d() calculates the Fisher information in the histogram of
one (parton-level or detector-level) observable.


	FisherInformation.calculate_fisher_information_hist2d() calculates the Fisher information in a two-dimensional
histogram of two (parton-level or detector-level) observables.


	FisherInformation.histogram_of_fisher_information() calculates the full truth-level Fisher information in
different slices of one observable (the “distribution of the Fisher information”).




Finally, don’t forget that in the presence of nuisance parameters the constraint terms also affect the Fisher
information. This term is given by FisherInformation.calculate_fisher_information_nuisance_constraints().


	Parameters

	
	filenamestr

	Path to MadMiner file (for instance the output of madminer.delphes.DelphesProcessor.save()).



	include_nuisance_parametersbool, optional

	If True, nuisance parameters are taken into account. Default value: True.



	debugbool, optional

	If True, additional detailed debugging output is printed. Default value: False.









Methods







	calculate_fisher_information_full_detector(…)

	Calculates the full Fisher information in realistic detector-level observations, estimated with neural networks.



	calculate_fisher_information_full_truth(theta)

	Calculates the full Fisher information at parton / truth level.



	calculate_fisher_information_hist1d(theta, …)

	Calculates the Fisher information in the one-dimensional histogram of an (parton-level or detector-level, depending on how the observations in the MadMiner file were calculated) observable.



	calculate_fisher_information_hist2d(theta, …)

	Calculates the Fisher information in a two-dimensional histogram of two (parton-level or detector-level, depending on how the observations in the MadMiner file were calculated) observables.



	calculate_fisher_information_nuisance_constraints()

	Builds the Fisher information term representing the Gaussian constraints on the nuisance parameters



	calculate_fisher_information_rate(theta, …)

	Calculates the Fisher information in a measurement of the total cross section (without any kinematic information).



	extract_observables_and_weights(thetas)

	Extracts observables and weights for given parameter points.



	extract_raw_data([theta])

	Returns all events together with the benchmark weights (if theta is None) or weights for a given theta.



	histogram_of_fisher_information(theta, …)

	Calculates the full and rate-only Fisher information in slices of one observable.







	
calculate_fisher_information_full_detector(theta, model_file, unweighted_x_sample_file=None, luminosity=300000.0, include_xsec_info=True, mode='score', uncertainty='ensemble', ensemble_vote_expectation_weight=None, batch_size=100000, test_split=0.5)

	Calculates the full Fisher information in realistic detector-level observations, estimated with neural networks.
In addition to the MadMiner file, this requires a trained SALLY or SALLINO estimator.

Nuisance parameter are taken into account automatically if the SALLY / SALLINO model was trained with them.


	Parameters

	
	thetandarray

	Parameter point theta at which the Fisher information matrix I_ij(theta) is evaluated.



	model_filestr

	Filename of a trained local score regression model that was trained on samples from theta (see
madminer.ml.MLForge).



	unweighted_x_sample_filestr or None

	Filename of an unweighted x sample that is sampled according to theta and obeys the cuts
(see madminer.sampling.SampleAugmenter.extract_samples_train_local()). If None, the Fisher information
is instead calculated on the full, weighted samples (the data in the MadMiner file). Default value: None.



	luminosityfloat, optional

	Luminosity in pb^-1. Default value: 300000.



	include_xsec_infobool, optional

	Whether the rate information is included in the returned Fisher information. Default value: True.



	mode{“score”, “information”}, optional

	How the ensemble uncertainty on the kinematic Fisher information is calculated. If mode is “information”,
the Fisher information for each estimator is calculated individually and only then
are the sample mean and covariance calculated. If mode is “score”, the sample mean is
calculated for the score for each event. Default value: “score”.



	uncertainty{“ensemble”, “expectation”, “sum”}, optional

	How the covariance matrix of the Fisher information estimate is calculated. With “ensemble”, the ensemble
covariance is used. With “expectation”, the expectation of the score is used as a measure of the uncertainty
of the score estimator, and this uncertainty is propagated through to the covariance matrix. With “sum”,
both terms are summed. Default value: “ensemble”.



	ensemble_vote_expectation_weightfloat or list of float or None, optional

	For ensemble models, the factor that determines how much more weight is given to those estimators with small
expectation value. If a list is given, results are returned for each element in the list. If None, or if
EnsembleForge.calculate_expectation() has not been called, all estimators are treated equal. Default
value: None.



	batch_sizeint, optional

	Batch size. Default value: 100000.



	test_splitfloat or None, optional

	If unweighted_x_sample_file is None, this determines the fraction of weighted events used for evaluation.
If None, all events are used (this will probably include events used during training!). Default value: 0.5.







	Returns

	
	fisher_informationndarray or list of ndarray

	Estimated expected full detector-level Fisher information matrix with shape (n_parameters, n_parameters).
If more then one value ensemble_vote_expectation_weight is given, this is a list with results for all
entries in ensemble_vote_expectation_weight.



	fisher_information_uncertaintyndarray or list of ndarray or None

	Covariance matrix of the Fisher information matrix with shape
(n_parameters, n_parameters, n_parameters, n_parameters). If more then one value
ensemble_vote_expectation_weight is given, this is a list with results for all entries in
ensemble_vote_expectation_weight.














	
calculate_fisher_information_full_truth(theta, luminosity=300000.0, cuts=None, efficiency_functions=None, include_nuisance_parameters=True)

	Calculates the full Fisher information at parton / truth level. This is the information in an idealized
measurement where all parton-level particles with their charges, flavours, and four-momenta can be accessed with
perfect accuracy, i.e. the latent variables z_parton can be measured directly.


	Parameters

	
	thetandarray

	Parameter point theta at which the Fisher information matrix I_ij(theta) is evaluated.



	luminosityfloat

	Luminosity in pb^-1.



	cutsNone or list of str, optional

	Cuts. Each entry is a parseable Python expression that returns a bool (True if the event should pass a cut,
False otherwise). Default value: None.



	efficiency_functionslist of str or None

	Efficiencies. Each entry is a parseable Python expression that returns a float for the efficiency of one
component. Default value: None.



	include_nuisance_parametersbool, optional

	If True, nuisance parameters are taken into account. Default value: True.







	Returns

	
	fisher_informationndarray

	Expected full truth-level Fisher information matrix with shape (n_parameters, n_parameters).



	fisher_information_uncertaintyndarray

	Covariance matrix of the Fisher information matrix with shape
(n_parameters, n_parameters, n_parameters, n_parameters), calculated with plain Gaussian error
propagation.














	
calculate_fisher_information_hist1d(theta, luminosity, observable, nbins, histrange=None, cuts=None, efficiency_functions=None, n_events_dynamic_binning=100000)

	Calculates the Fisher information in the one-dimensional histogram of an (parton-level or detector-level,
depending on how the observations in the MadMiner file were calculated) observable.


	Parameters

	
	thetandarray

	Parameter point theta at which the Fisher information matrix I_ij(theta) is evaluated.



	luminosityfloat

	Luminosity in pb^-1.



	observablestr

	Expression for the observable to be histogrammed. The str will be parsed by Python’s eval() function
and can use the names of the observables in the MadMiner files.



	nbinsint

	Number of bins in the histogram, excluding overflow bins.



	histrangetuple of float or None, optional

	Minimum and maximum value of the histogram in the form (min, max). Overflow bins are always added. If
None, variable-width bins with equal cross section are constructed automatically. Default value: None.



	cutsNone or list of str, optional

	Cuts. Each entry is a parseable Python expression that returns a bool (True if the event should pass a cut,
False otherwise). Default value: None.



	efficiency_functionslist of str or None

	Efficiencies. Each entry is a parseable Python expression that returns a float for the efficiency of one
component. Default value: None.



	n_events_dynamic_binningint, optional

	Number of events used to calculate the dynamic binning (if histrange is None). Default value: 100000.







	Returns

	
	fisher_informationndarray

	Expected Fisher information in the histogram with shape (n_parameters, n_parameters).



	fisher_information_uncertaintyndarray

	Covariance matrix of the Fisher information matrix with shape
(n_parameters, n_parameters, n_parameters, n_parameters), calculated with plain Gaussian error
propagation.














	
calculate_fisher_information_hist2d(theta, luminosity, observable1, nbins1, observable2, nbins2, histrange1=None, histrange2=None, cuts=None, efficiency_functions=None, n_events_dynamic_binning=100000)

	Calculates the Fisher information in a two-dimensional histogram of two (parton-level or detector-level,
depending on how the observations in the MadMiner file were calculated) observables.


	Parameters

	
	thetandarray

	Parameter point theta at which the Fisher information matrix I_ij(theta) is evaluated.



	luminosityfloat

	Luminosity in pb^-1.



	observable1str

	Expression for the first observable to be histogrammed. The str will be parsed by Python’s eval() function
and can use the names of the observables in the MadMiner files.



	nbins1int

	Number of bins along the first axis in the histogram, excluding overflow bins.



	observable2str

	Expression for the first observable to be histogrammed. The str will be parsed by Python’s eval() function
and can use the names of the observables in the MadMiner files.



	nbins2int

	Number of bins along the first axis in the histogram, excluding overflow bins.



	histrange1tuple of float or None, optional

	Minimum and maximum value of the first axis of the histogram in the form (min, max). Overflow bins are
always added. If None, variable-width bins with equal cross section are constructed automatically. Default
value: None.



	histrange2tuple of float or None, optional

	Minimum and maximum value of the first axis of the histogram in the form (min, max). Overflow bins are
always added. If None, variable-width bins with equal cross section are constructed automatically. Default
value: None.



	cutsNone or list of str, optional

	Cuts. Each entry is a parseable Python expression that returns a bool (True if the event should pass a cut,
False otherwise). Default value: None.



	efficiency_functionslist of str or None

	Efficiencies. Each entry is a parseable Python expression that returns a float for the efficiency of one
component. Default value: None.



	n_events_dynamic_binningint, optional

	Number of events used to calculate the dynamic binning (if histrange is None). Default value: 100000.







	Returns

	
	fisher_informationndarray

	Expected Fisher information in the histogram with shape (n_parameters, n_parameters).



	fisher_information_uncertaintyndarray

	Covariance matrix of the Fisher information matrix with shape
(n_parameters, n_parameters, n_parameters, n_parameters), calculated with plain Gaussian error
propagation.














	
calculate_fisher_information_nuisance_constraints()

	Builds the Fisher information term representing the Gaussian constraints on the nuisance parameters






	
calculate_fisher_information_rate(theta, luminosity, cuts=None, efficiency_functions=None, include_nuisance_parameters=True)

	Calculates the Fisher information in a measurement of the total cross section (without any kinematic
information).


	Parameters

	
	thetandarray

	Parameter point theta at which the Fisher information matrix I_ij(theta) is evaluated.



	luminosityfloat

	Luminosity in pb^-1.



	cutsNone or list of str, optional

	Cuts. Each entry is a parseable Python expression that returns a bool (True if the event should pass a cut,
False otherwise). Default value: None.



	efficiency_functionslist of str or None

	Efficiencies. Each entry is a parseable Python expression that returns a float for the efficiency of one
component. Default value: None.



	include_nuisance_parametersbool, optional

	If True, nuisance parameters are taken into account. Default value: True.







	Returns

	
	fisher_informationndarray

	Expected Fisher information in the total cross section with shape (n_parameters, n_parameters).



	fisher_information_uncertaintyndarray

	Covariance matrix of the Fisher information matrix with shape
(n_parameters, n_parameters, n_parameters, n_parameters), calculated with plain Gaussian error
propagation.














	
extract_observables_and_weights(thetas)

	Extracts observables and weights for given parameter points.


	Parameters

	
	thetasndarray

	Parameter points, with shape (n_thetas, n_parameters).







	Returns

	
	xndarray

	Observations x with shape (n_events, n_observables).



	weightsndarray

	Weights dsigma(x|theta) in pb with shape (n_thetas, n_events).














	
extract_raw_data(theta=None)

	Returns all events together with the benchmark weights (if theta is None) or weights for a given theta.


	Parameters

	
	thetaNone or ndarray, optional

	If None, the function returns the benchmark weights. Otherwise it uses morphing to calculate the weights for
this value of theta. Default value: None.







	Returns

	
	xndarray

	Observables with shape (n_unweighted_samples, n_observables).



	weightsndarray

	If theta is None, benchmark weights with shape  (n_unweighted_samples, n_benchmarks_phys) in pb. Otherwise,
weights for the given parameter theta with shape (n_unweighted_samples,) in pb.














	
histogram_of_fisher_information(theta, luminosity, observable, nbins, histrange, cuts=None, efficiency_functions=None)

	Calculates the full and rate-only Fisher information in slices of one observable.


	Parameters

	
	thetandarray

	Parameter point theta at which the Fisher information matrix I_ij(theta) is evaluated.



	luminosityfloat

	Luminosity in pb^-1.



	observablestr

	Expression for the observable to be sliced. The str will be parsed by Python’s eval() function
and can use the names of the observables in the MadMiner files.



	nbinsint

	Number of bins in the slicing, excluding overflow bins.



	histrangetuple of float

	Minimum and maximum value of the slicing in the form (min, max). Overflow bins are always added.



	cutsNone or list of str, optional

	Cuts. Each entry is a parseable Python expression that returns a bool (True if the event should pass a cut,
False otherwise). Default value: None.



	efficiency_functionslist of str or None

	Efficiencies. Each entry is a parseable Python expression that returns a float for the efficiency of one
component. Default value: None.







	Returns

	
	bin_boundariesndarray

	Observable slice boundaries.



	sigma_binsndarray

	Cross section in pb in each of the slices.



	rate_fisher_infosndarray

	Expected rate-only Fisher information for each slice. Has shape (n_slices, n_parameters, n_parameters).



	full_fisher_infos_truthndarray

	Expected full truth-level Fisher information for each slice. Has shape
(n_slices, n_parameters, n_parameters).


















	
madminer.fisherinformation.profile_information(fisher_information, remaining_components, covariance=None, error_propagation_n_ensemble=1000, error_propagation_factor=0.001)

	Calculates the profiled Fisher information matrix as defined in Appendix A.4 of arXiv:1612.05261.


	Parameters

	
	fisher_informationndarray

	Original n x n Fisher information.



	remaining_componentslist of int

	List with m entries, each an int with 0 <= remaining_compoinents[i] < n. Denotes which parameters are kept, and
their new order. All other parameters or profiled out.



	covariancendarray or None, optional

	The covariance matrix of the original Fisher information with shape (n, n, n, n). If None, the error on the
profiled information is not calculated. Default value: None.



	error_propagation_n_ensembleint, optional

	If covariance is not None, this sets the number of Fisher information matrices drawn from a normal distribution
for the Monte-Carlo error propagation. Default value: 1000.



	error_propagation_factorfloat, optional

	If covariance is not None, this factor multiplies the covariance of the distribution of Fisher information
matrices. Smaller factors can avoid problems with ill-behaved Fisher information matrices. Default value: 1.e-3.







	Returns

	
	profiled_fisher_informationndarray

	Profiled m x m Fisher information, where the i-th row or column corresponds to the
remaining_components[i]-th row or column of fisher_information.



	profiled_fisher_information_covariancendarray

	Covariance matrix of the profiled Fishere information matrix with shape (m, m, m, m).














	
madminer.fisherinformation.project_information(fisher_information, remaining_components)

	Calculates projections of a Fisher information matrix, that is, “deletes” the rows and columns corresponding to
some parameters not of interest.


	Parameters

	
	fisher_informationndarray

	Original n x n Fisher information.



	remaining_componentslist of int

	List with m entries, each an int with 0 <= remaining_compoinents[i] < n. Denotes which parameters are kept, and
their new order. All other parameters or projected out.







	Returns

	
	projected_fisher_informationndarray

	Projected m x m Fisher information, where the i-th row or column corresponds to the
remaining_components[i]-th row or column of fisher_information.

















          

      

      

    

  

    
      
          
            
  
madminer.lhe module


	
class madminer.lhe.LHEProcessor(filename)

	Bases: object

Detector simulation with smearing functions and simple calculation of observables.

After setting up the parameter space and benchmarks and running MadGraph and Pythia, all of which is organized
in the madminer.core.MadMiner class, the next steps are the simulation of detector effects and the calculation of
observables. Different tools can be used for these tasks, please feel free to implement the detector simulation and
analysis routine of your choice.

This class provides a simple implementation in which detector effects are modeled with smearing functions. Its
workflow consists of the following steps:


	Initializing the class with the filename of a MadMiner HDF5 file (the output of madminer.core.MadMiner.save())


	Adding one or multiple event samples produced by MadGraph and Pythia in LHEProcessor.add_sample().


	Running Delphes on the samples that require it through LHEProcessor.run_delphes().


	Optionally, smearing functions for all visible particles can be defined with
LHEProcessor.set_smearing().


	Defining observables through LHEProcessor.add_observable() or
LHEProcessor.add_observable_from_function(). A simple set of default observables is provided in
LHEProcessor.add_default_observables()


	Optionally, cuts can be set with LHEProcessor.add_cut()


	Calculating the observables from the Delphes ROOT files with LHEProcessor.analyse_delphes_samples()


	Saving the results with LHEProcessor.save()




Please see the tutorial for a detailed walk-through.


	Parameters

	
	filenamestr or None, optional

	Path to MadMiner file (the output of madminer.core.MadMiner.save()). Default value: None.









Methods







	add_cut(definition[, pass_if_not_parsed])

	Adds a cut as a string that can be parsed by Python’s eval() function and returns a bool.



	add_default_observables([n_leptons_max, …])

	Adds a set of simple standard observables: the four-momenta (parameterized as E, pT, eta, phi) of the hardest visible particles, and the missing transverse energy.



	add_observable(name, definition[, required, …])

	Adds an observable as a string that can be parsed by Python’s eval() function.



	add_observable_from_function(name, fn[, …])

	Adds an observable defined through a function.



	add_sample(lhe_filename, sampled_from_benchmark)

	Adds an LHE sample of simulated events.



	analyse_samples([reference_benchmark])

	Main function that parses the LHE samples, applies detector effects, checks cuts, and extracts the observables and weights.



	reset_cuts()

	Resets all cuts.



	reset_observables()

	Resets all observables.



	save(filename_out)

	Saves the observable definitions, observable values, and event weights in a MadMiner file.



	set_smearing([pdgids, …])

	Sets up the smearing of measured momenta from shower and detector effects.







	
add_cut(definition, pass_if_not_parsed=False)

	Adds a cut as a string that can be parsed by Python’s eval() function and returns a bool.


	Parameters

	
	definitionstr

	An expression that can be parsed by Python’s eval() function and returns a bool: True for the event
to pass this cut, False for it to be rejected. In the definition, all visible particles can be
used: e, mu, j, a, and l provide lists of electrons, muons, jets, photons, and leptons (electrons
and muons combined), in each case sorted by descending transverse momentum. met provides a missing ET
object. visible and all provide access to the sum of all visible particles and the sum of all visible
particles plus MET, respectively. All these objects are instances of MadMinerParticle, which inherits from
scikit-hep’s [LorentzVector](http://scikit-hep.org/api/math.html#vector-classes). See the link for a
documentation of their properties. In addition, MadMinerParticle have  properties charge and pdg_id,
which return the charge in units of elementary charges (i.e. an electron has e[0].charge = -1.), and the
PDG particle ID. For instance, “len(e) >= 2” requires at least two electrons passing the cuts,
while “mu[0].charge > 0.” specifies that the hardest muon is positively charged.



	pass_if_not_parsedbool, optional

	Whether the cut is passed if the observable cannot be parsed. Default value: False.







	Returns

	
	None

	












	
add_default_observables(n_leptons_max=2, n_photons_max=2, n_jets_max=2, include_met=True, include_visible_sum=True, include_numbers=True, include_charge=True)

	Adds a set of simple standard observables: the four-momenta (parameterized as E, pT, eta, phi) of the hardest
visible particles, and the missing transverse energy.


	Parameters

	
	n_leptons_maxint, optional

	Number of hardest leptons for which the four-momenta are saved. Default value: 2.



	n_photons_maxint, optional

	Number of hardest photons for which the four-momenta are saved. Default value: 2.



	n_jets_maxint, optional

	Number of hardest jets for which the four-momenta are saved. Default value: 2.



	include_metbool, optional

	Whether the missing energy observables are stored. Default value: True.



	include_visible_sumbool, optional

	Whether observables characterizing the sum of all particles are stored. Default value: True.



	include_numbersbool, optional

	Whether the number of leptons, photons, and jets is saved as observable. Default value: True.



	include_chargebool, optional

	Whether the lepton charge is saved as observable. Default value: True.







	Returns

	
	None

	












	
add_observable(name, definition, required=False, default=None)

	Adds an observable as a string that can be parsed by Python’s eval() function.


	Parameters

	
	namestr

	Name of the observable. Since this name will be used in eval() calls for cuts, this should not contain
spaces or special characters.



	definitionstr

	An expression that can be parsed by Python’s eval() function. As objects, all particles can be
used: e, mu, j, a, l, v provide lists of electrons, muons, jets, photons, leptons (electrons
and muons combined), and neutrinos, in each case sorted by descending transverse momentum. met provides a
missing ET object. p gives all particles in the same order as in the LHE file (i.e. in the same order as
defined in the MadGraph process card). All these objects are instances of MadMinerParticle, which
inherits from scikit-hep’s [LorentzVector](http://scikit-hep.org/api/math.html#vector-classes). See the link
for a documentation of their properties. In addition, MadMinerParticle have  properties charge and
pdg_id, which return the charge in units of elementary charges (i.e. an electron has e[0].charge = -1.),
and the PDG particle ID. For instance, “abs(j[0].phi() - j[1].phi())” defines the azimuthal angle between
the two hardest jets.



	requiredbool, optional

	Whether the observable is required. If True, an event will only be retained if this observable is
successfully parsed. For instance, any observable involving “j[1]” will only be parsed if there are at
least two jets passing the acceptance cuts. Default value: False.



	defaultfloat or None, optional

	If required=False, this is the placeholder value for observables that cannot be parsed. None is replaced
with np.nan. Default value: None.







	Returns

	
	None

	












	
add_observable_from_function(name, fn, required=False, default=None)

	Adds an observable defined through a function.


	Parameters

	
	namestr

	Name of the observable. Since this name will be used in eval() calls for cuts, this should not contain
spaces or special characters.



	fnfunction

	A function with signature observable(particles) where the input arguments are lists of
MadMinerParticle instances (ordered in the same way as in the LHE file) and a float is returned. The
function should raise a RuntimeError to signal that it is not defined.



	requiredbool, optional

	Whether the observable is required. If True, an event will only be retained if this observable is
successfully parsed. For instance, any observable involving “j[1]” will only be parsed if there are at
least two jets passing the acceptance cuts. Default value: False.



	defaultfloat or None, optional

	If required=False, this is the placeholder value for observables that cannot be parsed. None is replaced
with np.nan. Default value: None.







	Returns

	
	None

	












	
add_sample(lhe_filename, sampled_from_benchmark, is_background=False, k_factor=1.0)

	Adds an LHE sample of simulated events.


	Parameters

	
	lhe_filenamestr

	Path to the LHE event file (with extension ‘.lhe’ or ‘.lhe.gz’).



	sampled_from_benchmarkstr

	Name of the benchmark that was used for sampling in this event file (the keyword sample_benchmark
of madminer.core.MadMiner.run()).



	is_backgroundbool, optional

	Whether the sample is a background sample (i.e. without benchmark reweighting).



	k_factorfloat, optional

	Multiplies the cross sections found in the sample. Default value: 1.







	Returns

	
	None

	












	
analyse_samples(reference_benchmark=None)

	Main function that parses the LHE samples, applies detector effects, checks cuts, and extracts
the observables and weights.


	Parameters

	
	reference_benchmarkstr or None, optional

	The weights at the nuisance benchmarks will be rescaled to some reference theta benchmark:
dsigma(x|theta_sampling(x),nu) -> dsigma(x|theta_ref,nu) = dsigma(x|theta_sampling(x),nu)
* dsigma(x|theta_ref,0) / dsigma(x|theta_sampling(x),0). This sets the name of the reference benchmark.
If None, the first one will be used. Default value: None.







	Returns

	
	None

	












	
reset_cuts()

	Resets all cuts.






	
reset_observables()

	Resets all observables.






	
save(filename_out)

	Saves the observable definitions, observable values, and event weights in a MadMiner file. The parameter,
benchmark, and morphing setup is copied from the file provided during initialization. Nuisance benchmarks found
in the LHE file are added.


	Parameters

	
	filename_outstr

	Path to where the results should be saved.







	Returns

	
	None

	












	
set_smearing(pdgids=None, energy_resolution_abs=0.0, energy_resolution_rel=0.0, pt_resolution_abs=0.0, pt_resolution_rel=0.0, eta_resolution_abs=0.0, eta_resolution_rel=0.0, phi_resolution_abs=0.0, phi_resolution_rel=0.0)

	Sets up the smearing of measured momenta from shower and detector effects.

This function can be called with pdgids=None, in which case the settinigs are used for all visible particles,
or with pdgids set to a list of PDG ids representing particles, for instance [11, -11] for electrons (and
positrons).

For all particles of this type, and for the energy, pT, phi, and eta, the measurement error is drawn from a
Gaussian with mean 0 and standard deviation given by (X_resolution_abs + X * X_resolution_rel). Here X is
the quantity (E, pT, phi, eta) of interest and X_resolution_abs and X_resolution_rel are the corresponding
keywords. In the case of energy and pT, values smaller than 0  will lead to a re-drawing of the measurement
error.

Instead of such numerical values, either the energy or pT resolution (but not both!) may be set to None. In
this case, this quantity is calculated from the mass of the particle and all other smeared particles. For
instance, when pt_resolution_abs is None or pt_resolution_rel is None, for the given particles the energy,
phi, and eta are smeared (according to their respective resolutions). Then the transverse momentum is calculated
from the on-shell condition p^2 = m^2, or pT = sqrt(E^2 - m^2) / cosh(eta). When this does not have a
solution, the pT is set to zero. On the other hand, when energy_resolution_abs is None or energy_resolution_abs
is None, for the given particles the pT, phi, and eta are smeared, and then the energy is calculated as
E = sqrt(pT * cosh(eta))^2 + m^2).


	Parameters

	
	pdgidsNone or list of int, optional

	Defines the particles these smearing functions affect. If None, all particles are affected. Note that if
set_smearing() is called multiple times for a given particle, the earlier calls will be forgotten and only
the last smearing function will take effect. Default value: None.



	energy_resolution_absfloat or None, optional

	Absolute measurement uncertainty for the energy in GeV. None means that the pT is not smeared directly, but
calculated from the on-shell condition. Default value: 0.



	energy_resolution_relfloat or None, optional

	Relative measurement uncertainty for the energy. None means that the pT is not smeared directly, but
calculated from the on-shell condition. Default value: 0.



	pt_resolution_absfloat or None, optional

	Absolute measurement uncertainty for the pT in GeV. None means that the pT is not smeared directly, but
calculated from the on-shell condition. Default value: 0.



	pt_resolution_relfloat or None, optional

	Relative measurement uncertainty for the pT. None means that the pT is not smeared directly, but
calculated from the on-shell condition. Default value: 0.



	eta_resolution_absfloat, optional

	Absolute measurement uncertainty for eta. Default value: 0.



	eta_resolution_relfloat, optional

	Relative measurement uncertainty for eta. Default value: 0.



	phi_resolution_absfloat, optional

	Absolute measurement uncertainty for phi. Default value: 0.



	phi_resolution_relfloat, optional

	Relative measurement uncertainty for phi. Default value: 0.







	Returns

	
	None
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class madminer.ml.EnsembleForge(estimators=None, debug=False)

	Bases: object

Ensemble methods for likelihood ratio and score information.

Generally, EnsembleForge instances can be used very similarly to MLForge instances:


	The initialization of EnsembleForge takes a list of (trained or untrained) MLForge instances.


	The methods EnsembleForge.train_one() and EnsembleForge.train_all() train the estimators (this can also be
done outside of EnsembleForge).


	EnsembleForge.calculate_expectation() can be used to calculate the expectation of the estimation likelihood
ratio or the expected estimated score over a validation sample. Ideally (and assuming the correct sampling),
these expectation values should be close to zero. Deviations from zero therefore point out that the estimator
is probably inaccurate.


	EnsembleForge.evaluate() and EnsembleForge.calculate_fisher_information() can then be used to calculate
ensemble predictions. The user has the option to treat all estimators equally (‘committee method’) or to give those
with expected score / ratio close to zero a higher weight.


	EnsembleForge.save() and EnsembleForge.load() can store all estimators in one folder.




The individual estimators in the ensemble can be trained with different methods, but they have to be of the same
type: either all estimators are single-parameterized likelihood ratio estimators, or all estimators are
doubly-parameterized likelihood estimators, or all estimators are local score regressors.


	Parameters

	
	estimatorsNone or int or list of (MLForge or str), optional

	If int, sets the number of estimators that will be created as new MLForge instances. If list, sets
the estimators directly, either from MLForge instances or filenames (that are then loaded with
MLForge.load()). If None, the ensemble is initialized without estimators. Note that the estimators have
to be consistent: either all of them are trained with a local score method (‘sally’ or ‘sallino’); or all of
them are trained with a single-parameterized method (‘carl’, ‘rolr’, ‘rascal’, ‘scandal’, ‘alice’, or ‘alices’);
or all of them are trained with a doubly parameterized method (‘carl2’, ‘rolr2’, ‘rascal2’, ‘alice2’, or
‘alices2’). Mixing estimators of different types within one of these three categories is supported, but mixing
estimators from different categories is not and will raise a RuntimeException. Default value: None.







	Attributes

	
	estimatorslist of MLForge

	The estimators in the form of MLForge instances.



	debugbool, optional

	If True, additional detailed debugging output is printed. Default value: False.









Methods







	add_estimator(estimator)

	Adds an estimator to the ensemble.



	calculate_expectation(x_filename[, …])

	Calculates the expectation of the estimation likelihood ratio or the expected estimated score over a validation sample.



	calculate_fisher_information(x[, …])

	Calculates expected Fisher information matrices for an ensemble of SALLY estimators.



	evaluate(x_filename[, theta0_filename, …])

	Evaluates the estimators of the likelihood ratio (or, if method is ‘sally’ or ‘sallino’, the score), and calculates the ensemble mean or variance.



	load(folder)

	Loads the estimator ensemble from a folder.



	save(folder[, save_model])

	Saves the estimator ensemble to a folder.



	train_all(**kwargs)

	Trains all estimators.



	train_one(i, **kwargs)

	Trains an individual estimator.







	
add_estimator(estimator)

	Adds an estimator to the ensemble.


	Parameters

	
	estimatorMLForge or str

	The estimator, either as MLForge instance or filename (which is then loaded with MLForge.load()).







	Returns

	
	None

	












	
calculate_expectation(x_filename, theta0_filename=None, theta1_filename=None)

	Calculates the expectation of the estimation likelihood ratio or the expected estimated score over a validation
sample. Ideally (and assuming the correct sampling), these expectation values should be close to zero.
Deviations from zero therefore point out that the estimator is probably inaccurate.


	Parameters

	
	x_filenamestr

	Path to an unweighted sample of observations, as saved by the madminer.sampling.SampleAugmenter functions.



	theta0_filenamestr or None, optional

	Path to an unweighted sample of numerator parameters, as saved by the madminer.sampling.SampleAugmenter
functions. Required if the estimators were trained with the ‘alice’, ‘alice2’, ‘alices’, ‘alices2’, ‘carl’,
‘carl2’, ‘nde’, ‘rascal’, ‘rascal2’, ‘rolr’, ‘rolr2’, or ‘scandal’ method. Default value: None.



	theta1_filenamestr or None, optional

	Path to an unweighted sample of denominator parameters, as saved by the madminer.sampling.SampleAugmenter
functions. Required if the estimators were trained with the ‘alice2’, ‘alices2’, ‘carl2’, ‘rascal2’, or
‘rolr2’ method. Default value: None.







	Returns

	
	expectationsndarray

	Expected score (if the estimators were trained with the ‘sally’ or ‘sallino’ methods) or likelihood ratio
(otherwise).














	
calculate_fisher_information(x, obs_weights=None, n_events=1, mode='score', uncertainty='ensemble', vote_expectation_weight=None, return_individual_predictions=False)

	Calculates expected Fisher information matrices for an ensemble of SALLY estimators.

There are two ways of calculating the ensemble average. In the default “score” mode, the ensemble average for
the score is calculated for each event, and the Fisher information is calculated based on these mean scores. In
the “information” mode, the Fisher information is calculated for each estimator separately and the ensemble
mean is calculated only for the final Fisher information matrix. The “score” mode is generally assumed to be
more precise and is the default.

In the “score” mode, the covariance matrix of the final result is calculated in the following way:
- For each event x and each estimator a, the “shifted” predicted score is calculated as


t_a’(x) = t(x) + 1/sqrt(n) * (t_a(x) - t(x)). Here t(x) is the mean score (averaged over the ensemble)
for this event, t_a(x) is the prediction of estimator a for this event, and n is the number of
estimators. The ensemble variance of these shifted score predictions is equal to the uncertainty on the mean
of the ensemble of original predictions.





	For each estimator a, the shifted Fisher information matrix I_a’ is calculated  from the shifted predicted
scores.


	The ensemble covariance between all Fisher information matrices I_a’ is calculated and taken as the
measure of uncertainty on the Fisher information calculated from the mean scores.




In the “information” mode, the user has the option to treat all estimators equally (‘committee method’) or to
give those with expected score close to zero (as calculated by calculate_expectation()) a higher weight. In
this case, the ensemble mean I is calculated as I  =  sum_i w_i I_i with weights
w_i  =  exp(-vote_expectation_weight |E[t_i]|) / sum_j exp(-vote_expectation_weight |E[t_k]|). Here I_i
are the individual estimators and E[t_i] is the expectation value calculated by calculate_expectation().


	Parameters

	
	xstr or ndarray

	Sample of observations, or path to numpy file with observations, as saved by the
madminer.sampling.SampleAugmenter functions. Note that this sample has to be sampled from the reference
parameter where the score is estimated with the SALLY / SALLINO estimator!



	obs_weightsNone or ndarray, optional

	Weights for the observations. If None, all events are taken to have equal weight. Default value: None.



	n_eventsfloat, optional

	Expected number of events for which the kinematic Fisher information should be calculated. Default value: 1.



	mode{“score”, “information”}, optional

	If mode is “information”, the Fisher information for each estimator is calculated individually and only then
are the sample mean and covariance calculated. If mode is “score”, the sample mean is
calculated for the score for each event. Default value: “score”.



	uncertainty{“ensemble”, “expectation”, “sum”}, optional

	How the covariance matrix of the Fisher information estimate is calculate. With “ensemble”, the ensemble
covariance is used (only supported if mode is “information”). With “expectation”, the expectation of the
score is used as a measure of the uncertainty of the score estimator, and this uncertainty is propagated
through to the covariance matrix. With “sum”, both terms are summed (only supported if mode is
“information”). Default value: “ensemble”.



	vote_expectation_weightfloat or list of float or None, optional

	If mode is “information”, this factor determines how much more weight is given to those estimators with
small expectation value (as calculated by calculate_expectation()). If a list is given, results are
returned for each element in the list. If None, or if calculate_expectation() has not been called, all
estimators are treated equal. Default value: None.



	return_individual_predictionsbool, optional

	If mode is “information”, sets whether the individual estimator predictions are returned. Default value:
False.







	Returns

	
	mean_predictionndarray or list of ndarray

	The (weighted) ensemble mean of the estimators. If the estimators were trained with method=’sally’ or
method=’sallino’, this is an array of the estimator for t(x_i | theta_ref) for all events i.
Otherwise, the estimated likelihood ratio (if test_all_combinations is True, the result has shape
(n_thetas, n_x), otherwise, it has shape (n_samples,)). If more then one value vote_expectation_weight
is given, this is a list with results for all entries in vote_expectation_weight.



	covariancendarray or list of ndarray

	The covariance matrix of the Fisher information estimate. Its definition depends on the value of
uncertainty; by default, the covariance is defined as the ensemble covariance (only supported if mode is
“information”). This object has four indices, cov_(ij)(i’j’), ordered as i j i’ j’. It has shape
(n_parameters, n_parameters, n_parameters, n_parameters). If more then one value vote_expectation_weight
is given, this is a list with results for all entries in vote_expectation_weight.



	weightsndarray or list of ndarray

	Only returned if return_individual_predictions is True. The estimator weights w_i. If more then one value
vote_expectation_weight is given, this is a list with results for all entries in vote_expectation_weight.



	individual_predictionsndarray

	Only returned if return_individual_predictions is True. The individual estimator predictions.














	
evaluate(x_filename, theta0_filename=None, theta1_filename=None, test_all_combinations=True, vote_expectation_weight=None, calculate_covariance=False, return_individual_predictions=False)

	Evaluates the estimators of the likelihood ratio (or, if method is ‘sally’ or ‘sallino’, the score), and
calculates the ensemble mean or variance.

The user has the option to treat all estimators equally (‘committee method’) or to give those with expected
score / ratio close to zero (as calculated by calculate_expectation()) a higher weight. In the latter case,
the ensemble mean f(x) is calculated as f(x)  =  sum_i w_i f_i(x) with weights
w_i  =  exp(-vote_expectation_weight |E[f_i]|) / sum_j exp(-vote_expectation_weight |E[f_j]|). Here f_i(x)
are the individual estimators and E[f_i] is the expectation value calculated by calculate_expectation().


	Parameters

	
	x_filenamestr

	Path to an unweighted sample of observations, as saved by the madminer.sampling.SampleAugmenter functions.



	theta0_filenamestr or None, optional

	Path to an unweighted sample of numerator parameters, as saved by the madminer.sampling.SampleAugmenter
functions. Required if the estimator was trained with the ‘alice’, ‘alice2’, ‘alices’, ‘alices2’, ‘carl’,
‘carl2’, ‘nde’, ‘rascal’, ‘rascal2’, ‘rolr’, ‘rolr2’, or ‘scandal’ method. Default value: None.



	theta1_filenamestr or None, optional

	Path to an unweighted sample of denominator parameters, as saved by the madminer.sampling.SampleAugmenter
functions. Required if the estimator was trained with the ‘alice2’, ‘alices2’, ‘carl2’, ‘rascal2’, or
‘rolr2’ method. Default value: None.



	test_all_combinationsbool, optional

	If method is not ‘sally’ and not ‘sallino’: If False, the number of samples in the observable and theta
files has to match, and the likelihood ratio is evaluated only for the combinations
r(x_i | theta0_i, theta1_i). If True, r(x_i | theta0_j, theta1_j) for all pairwise combinations i, j
are evaluated. Default value: True.



	vote_expectation_weightfloat or list of float or None, optional

	Factor that determines how much more weight is given to those estimators with small expectation value (as
calculated by calculate_expectation()). If a list is given, results are returned for each element in the
list. If None, or if calculate_expectation() has not been called, all estimators are treated equal.
Default value: None.



	calculate_covariancebool, optional

	Whether the covariance matrix is calculated. Default value: False.



	return_individual_predictionsbool, optional

	Whether the individual estimator predictions are returned. Default value: False.







	Returns

	
	mean_predictionndarray or list of ndarray

	The (weighted) ensemble mean of the estimators. If the estimators were trained with method=’sally’ or
method=’sallino’, this is an array of the estimator for t(x_i | theta_ref) for all events i.
Otherwise, the estimated likelihood ratio (if test_all_combinations is True, the result has shape
(n_thetas, n_x), otherwise, it has shape (n_samples,)). If more then one value vote_expectation_weight
is given, this is a list with results for all entries in vote_expectation_weight.



	covarianceNone or ndarray or list of ndarray

	The covariance matrix of the (flattened) predictions, defined as the ensemble covariance. If more then one
value vote_expectation_weight is given, this is a list with results
for all entries in vote_expectation_weight. If calculate_covariance is False, None is returned.



	weightsndarray or list of ndarray

	Only returned if return_individual_predictions is True. The estimator weights w_i. If more then one value
vote_expectation_weight is given, this is a list with results for all entries in vote_expectation_weight.



	individual_predictionsndarray

	Only returned if return_individual_predictions is True. The individual estimator predictions.














	
load(folder)

	Loads the estimator ensemble from a folder.


	Parameters

	
	folderstr

	Path to the folder.







	Returns

	
	None

	












	
save(folder, save_model=False)

	Saves the estimator ensemble to a folder.


	Parameters

	
	folderstr

	Path to the folder.



	save_modelbool, optional

	If True, the whole model is saved in addition to the state dict. This is not necessary for loading it
again with EnsembleForge.load(), but can be useful for debugging, for instance to plot the computational
graph.







	Returns

	
	None

	












	
train_all(**kwargs)

	Trains all estimators. See MLForge.train().


	Parameters

	
	kwargsdict

	Parameters for MLForge.train(). If a value in this dict is a list, it has to have length n_estimators
and contain one value of this parameter for each of the estimators. Otherwise the value is used as parameter
for the training of all the estimators.







	Returns

	
	None

	












	
train_one(i, **kwargs)

	Trains an individual estimator. See MLForge.train().


	Parameters

	
	iint

	The index 0 <= i < n_estimators of the estimator to be trained.



	kwargsdict

	Parameters for MLForge.train().







	Returns

	
	None

	
















	
class madminer.ml.MLForge(debug=False)

	Bases: object

Estimating likelihood ratios and scores with machine learning.

Each instance of this class represents one neural estimator. The most important functions are:


	MLForge.train() to train an estimator. The keyword method determines the inference technique
and whether a class instance represents a single-parameterized likelihood ratio estimator, a doubly-parameterized
likelihood ratio estimator, or a local score estimator.


	MLForge.evaluate() to evaluate the estimator.


	MLForge.save() to save the trained model to files.


	MLForge.load() to load the trained model from files.




Please see the tutorial for a detailed walk-through.


	Parameters

	
	debugbool, optional

	If True, additional detailed debugging output is printed. Default value: False.









Methods







	calculate_fisher_information(x[, weights, …])

	Calculates the expected Fisher information matrix based on the kinematic information in a given number of events.



	evaluate(x[, theta0_filename, …])

	Evaluates a trained estimator of the log likelihood ratio (or, if method is ‘sally’ or ‘sallino’, the score).



	load(filename)

	Loads a trained model from files.



	save(filename[, save_model])

	Saves the trained model to four files: a JSON file with the settings, a pickled pyTorch state dict file, and numpy files for the mean and variance of the inputs (used for input scaling).



	train(method, x_filename[, y_filename, …])

	Trains a neural network to estimate either the likelihood ratio or, if method is ‘sally’ or ‘sallino’, the score.







	
calculate_fisher_information(x, weights=None, n_events=1)

	Calculates the expected Fisher information matrix based on the kinematic information in a given number of
events. Currently only supported for estimators trained with method=’sally’ or method=’sallino’.


	Parameters

	
	xstr or ndarray

	Sample of observations, or path to numpy file with observations, as saved by the
madminer.sampling.SampleAugmenter functions. Note that this sample has to be sampled from the reference
parameter where the score is estimated with the SALLY / SALLINO estimator!



	weightsNone or ndarray, optional

	Weights for the observations. If None, all events are taken to have equal weight. Default value: None.



	n_eventsfloat, optional

	Expected number of events for which the kinematic Fisher information should be calculated. Default value: 1.







	Returns

	
	fisher_informationndarray

	Expected kinematic Fisher information matrix with shape (n_parameters, n_parameters).














	
evaluate(x, theta0_filename=None, theta1_filename=None, test_all_combinations=True, evaluate_score=False, return_grad_x=False)

	Evaluates a trained estimator of the log likelihood ratio (or, if method is ‘sally’ or ‘sallino’, the score).


	Parameters

	
	xstr or ndarray

	Sample of observations, or path to numpy file with observations, as saved by the
madminer.sampling.SampleAugmenter functions.



	theta0_filenamestr or None, optional

	Path to an unweighted sample of numerator parameters, as saved by the madminer.sampling.SampleAugmenter
functions. Required if the estimator was trained with the ‘alice’, ‘alice2’, ‘alices’, ‘alices2’, ‘carl’,
‘carl2’, ‘nde’, ‘rascal’, ‘rascal2’, ‘rolr’, ‘rolr2’, or ‘scandal’ method. Default value: None.



	theta1_filenamestr or None, optional

	Path to an unweighted sample of denominator parameters, as saved by the madminer.sampling.SampleAugmenter
functions. Required if the estimator was trained with the ‘alice2’, ‘alices2’, ‘carl2’, ‘rascal2’, or
‘rolr2’ method. Default value: None.



	test_all_combinationsbool, optional

	If method is not ‘sally’ and not ‘sallino’: If False, the number of samples in the observable and theta
files has to match, and the likelihood ratio is evaluated only for the combinations
r(x_i | theta0_i, theta1_i). If True, r(x_i | theta0_j, theta1_j) for all pairwise combinations i, j
are evaluated. Default value: True.



	evaluate_scorebool, optional

	If method is not ‘sally’ and not ‘sallino’, this sets whether in addition to the likelihood ratio the score
is evaluated. Default value: False.



	return_grad_xbool, optional

	If True, grad_x log r(x) or grad_x t(x) (for ‘sally’ or ‘sallino’ estimators) are returned in addition
to the other outputs. Default value: False.







	Returns

	
	sally_estimated_scorendarray

	Only returned if the network was trained with method=’sally’ or method=’sallino’. In this case, an
array of the estimator for t(x_i | theta_ref) is returned for all events i.



	log_likelihood_rationdarray

	Only returned if the network was trained with neither method=’sally’ nor method=’sallino’. The estimated
log likelihood ratio. If test_all_combinations is True, the result has shape (n_thetas, n_x). Otherwise,
it has shape (n_samples,).



	score_theta0ndarray or None

	Only returned if the network was trained with neither method=’sally’ nor method=’sallino’. None if
evaluate_score is False. Otherwise the derived estimated score at theta0. If test_all_combinations is
True, the result has shape (n_thetas, n_x, n_parameters). Otherwise, it has shape
(n_samples, n_parameters).



	score_theta1ndarray or None

	Only returned if the network was trained with neither method=’sally’ nor method=’sallino’. None if
evaluate_score is False, or the network was trained with any method other than ‘alice2’, ‘alices2’, ‘carl2’,
‘rascal2’, or ‘rolr2’. Otherwise the derived estimated score at theta1. If test_all_combinations is
True, the result has shape (n_thetas, n_x, n_parameters). Otherwise, it has shape
(n_samples, n_parameters).



	grad_xndarray

	Only returned if return_grad_x is True.














	
load(filename)

	Loads a trained model from files.


	Parameters

	
	filenamestr

	Path to the files. ‘_settings.json’ and ‘_state_dict.pl’ will be added.







	Returns

	
	None

	












	
save(filename, save_model=False)

	Saves the trained model to four files: a JSON file with the settings, a pickled pyTorch state dict
file, and numpy files for the mean and variance of the inputs (used for input scaling).


	Parameters

	
	filenamestr

	Path to the files. ‘_settings.json’ and ‘_state_dict.pl’ will be added.



	save_modelbool, optional

	If True, the whole model is saved in addition to the state dict. This is not necessary for loading it
again with MLForge.load(), but can be useful for debugging, for instance to plot the computational graph.







	Returns

	
	None

	












	
train(method, x_filename, y_filename=None, theta0_filename=None, theta1_filename=None, r_xz_filename=None, t_xz0_filename=None, t_xz1_filename=None, features=None, nde_type='mafmog', n_hidden=(100, 100), activation='tanh', maf_n_mades=3, maf_batch_norm=False, maf_batch_norm_alpha=0.1, maf_mog_n_components=10, alpha=1.0, trainer='amsgrad', n_epochs=50, batch_size=128, initial_lr=0.001, final_lr=0.0001, nesterov_momentum=None, validation_split=None, early_stopping=True, scale_inputs=True, shuffle_labels=False, grad_x_regularization=None, limit_samplesize=None, return_first_loss=False)

	Trains a neural network to estimate either the likelihood ratio or, if method is ‘sally’ or ‘sallino’, the
score.

The keyword method determines the structure of the estimator that an instance of this class represents:


	For ‘alice’, ‘alices’, ‘carl’, ‘nde’, ‘rascal’, ‘rolr’, and ‘scandal’, the neural network models
the likelihood ratio as a function of the observables x and the numerator hypothesis theta0, while
the denominator hypothesis is kept at a fixed reference value (“single-parameterized likelihood ratio
estimator”). In addition to the likelihood ratio, the estimator allows to estimate the score at theta0.


	For ‘alice2’, ‘alices2’, ‘carl2’, ‘rascal2’, and ‘rolr2’, the neural network models
the likelihood ratio as a function of the observables x, the numerator hypothesis theta0, and the
denominator hypothesis theta1 (“doubly parameterized likelihood ratio estimator”). The score at theta0
and theta1 can also be evaluated.


	For ‘sally’ and ‘sallino’, the neural networks models the score evaluated at some reference hypothesis
(“local score regression”). The likelihood ratio cannot be estimated directly from the neural network, but
can be estimated in a second step through density estimation in the estimated score space.





	Parameters

	
	methodstr

	The inference method used. Allows values are ‘alice’, ‘alices’, ‘carl’, ‘nde’, ‘rascal’, ‘rolr’, and
‘scandal’ for a single-parameterized likelihood ratio estimator; ‘alice2’, ‘alices2’, ‘carl2’, ‘rascal2’,
and ‘rolr2’ for a doubly-parameterized likelihood ratio estimator; and ‘sally’ and ‘sallino’ for local
score regression.



	x_filenamestr

	Path to an unweighted sample of observations, as saved by the madminer.sampling.SampleAugmenter functions.
Required for all inference methods.



	y_filenamestr or None, optional

	Path to an unweighted sample of class labels, as saved by the madminer.sampling.SampleAugmenter functions.
Required for the ‘alice’, ‘alice2’, ‘alices’, ‘alices2’, ‘carl’, ‘carl2’, ‘rascal’, ‘rascal2’, ‘rolr’,
and ‘rolr2’ methods. Default value: None.



	theta0_filenamestr or None, optional

	Path to an unweighted sample of numerator parameters, as saved by the madminer.sampling.SampleAugmenter
functions. Required for the ‘alice’, ‘alice2’, ‘alices’, ‘alices2’, ‘carl’, ‘carl2’, ‘nde’, ‘rascal’,
‘rascal2’, ‘rolr’, ‘rolr2’, and ‘scandal’ methods. Default value: None.



	theta1_filenamestr or None, optional

	Path to an unweighted sample of denominator parameters, as saved by the madminer.sampling.SampleAugmenter
functions. Required for the ‘alice2’, ‘alices2’, ‘carl2’, ‘rascal2’, and ‘rolr2’ methods. Default value:
None.



	r_xz_filenamestr or None, optional

	Path to an unweighted sample of joint likelihood ratios, as saved by the madminer.sampling.SampleAugmenter
functions. Required for the ‘alice’, ‘alice2’, ‘alices’, ‘alices2’, ‘rascal’, ‘rascal2’, ‘rolr’, and ‘rolr2’
methods. Default value: None.



	t_xz0_filenamestr or None, optional

	Path to an unweighted sample of joint scores at theta0, as saved by the madminer.sampling.SampleAugmenter
functions. Required for the ‘alices’, ‘alices2’, ‘rascal’, ‘rascal2’, ‘sallino’, ‘sally’, and ‘scandal’
methods. Default value: None.



	t_xz1_filenamestr or None, optional

	Path to an unweighted sample of joint scores at theta1, as saved by the madminer.sampling.SampleAugmenter
functions. Required for the ‘rascal2’ and ‘alices2’ methods. Default value: None.



	featureslist of int or None, optional

	Indices of observables (features) that are used as input to the neural networks. If None, all observables
are used. Default value: None.



	nde_type{‘maf’, ‘mafmog’}, optional

	If the method is ‘nde’ or ‘scandal’, nde_type determines the architecture used in the neural density
estimator. Currently supported are ‘maf’ for a Masked Autoregressive Flow with a Gaussian base density, or
‘mafmog’ for a Masked Autoregressive Flow with a mixture of Gaussian base densities. Default value:
‘mafmog’.



	n_hiddentuple of int, optional

	Units in each hidden layer in the neural networks. If method is ‘nde’ or ‘scandal’, this refers to the
setup of each individual MADE layer. Default value: (100, 100).



	activation{‘tanh’, ‘sigmoid’, ‘relu’}, optional

	Activation function. Default value: ‘tanh’.



	maf_n_madesint, optional

	If method is ‘nde’ or ‘scandal’, this sets the number of MADE layers. Default value: 3.



	maf_batch_normbool, optional

	If method is ‘nde’ or ‘scandal’, switches batch normalization layers after each MADE layer on or off.
Default: False.



	maf_batch_norm_alphafloat, optional

	If method is ‘nde’ or ‘scandal’ and maf_batch_norm is True, this sets the alpha parameter in the calculation
of the running average of the mean and variance. Default value: 0.1.



	maf_mog_n_componentsint, optional

	If method is ‘nde’ or ‘scandal’ and nde_type is ‘mafmog’, this sets the number of Gaussian base components.
Default value: 10.



	alphafloat, optional

	Hyperparameter weighting the score error in the loss function of the ‘alices’, ‘alices2’, ‘rascal’,
‘rascal2’, and ‘scandal’ methods. Default value: 1.



	trainer{“adam”, “amsgrad”, “sgd”}, optional

	Optimization algorithm. Default value: “amsgrad”.



	n_epochsint, optional

	Number of epochs. Default value: 50.



	batch_sizeint, optional

	Batch size. Default value: 128.



	initial_lrfloat, optional

	Learning rate during the first epoch, after which it exponentially decays to final_lr. Default value:
0.001.



	final_lrfloat, optional

	Learning rate during the last epoch. Default value: 0.0001.



	nesterov_momentumfloat or None, optional

	If trainer is “sgd”, sets the Nesterov momentum. Default value: None.



	validation_splitfloat or None, optional

	Fraction of samples used  for validation and early stopping (if early_stopping is True). If None, the entire
sample is used for training and early stopping is deactivated. Default value: None.



	early_stoppingbool, optional

	Activates early stopping based on the validation loss (only if validation_split is not None). Default value:
True.



	scale_inputsbool, optional

	Scale the observables to zero mean and unit variance. Default value: True.



	shuffle_labelsbool, optional

	If True, the labels (y, r_xz, t_xz) are shuffled, while the observations (x) remain in their
normal order. This serves as a closure test, in particular as cross-check against overfitting: an estimator
trained with shuffle_labels=True should predict to likelihood ratios around 1 and scores around 0.



	grad_x_regularizationfloat or None, optional

	If not None, a term of the form grad_x_regularization * |grad_x f(x)|^2 is added to the loss, where f(x)
is the neural network output (the estimated log likelihood ratio or score). Default value: None.



	limit_samplesizeint or None, optional

	If not None, only this number of samples (events) is used to train the estimator. Default value: None.



	return_first_lossbool, optional

	If True, the training routine only proceeds until the loss is calculated for the first time, at which point
the loss tensor is returned. This can be useful for debugging or visualization purposes (but of course not
for training a model).







	Returns

	
	None

	



















          

      

      

    

  

    
      
          
            
  
madminer.morphing module


	
class madminer.morphing.Morpher(parameters_from_madminer=None, parameter_max_power=None, parameter_range=None)

	Bases: object

Morphing functionality for theory parameters. Morphing is a technique that allows MadMax to infer the full
probability distribution p(x_i | theta) for each simulated event x_i and any theta, not just the benchmarks.

For a typical MadMiner application, it is not necessary to use the morphing classes directly. The other MadMiner
classes use the morphing functions “under the hood” when needed. Only for an isolated study of the morphing setup
(e.g. to optimize the morphing basis), the Morpher class itself may be of interest.

A typical morphing basis setup involves the following steps:


	The instance of the class is initialized with the parameter setup. The user can provide the parameters either
in the format of MadMiner.parameters. Alternatively, human-friendly lists of the key properties can be provided.


	The function find_components can be used to find the relevant components, i.e. individual terms
contributing to the squared matrix elements (alternatively they can be defined by the user with
set_components()).


	The final step is the definition of the morphing basis, i.e. the benchmark points for which the squared matrix
element will be evaluated before interpolating to other parameter points. Again the user can pick this basis
manually with set_basis(). Alternatively, this class provides a basic optimization routine for the basis choice
in optimize_basis().




The class also provides helper functions that are important for working with morphing:


	
	calculate_morphing_matrix() calculates the morphing matrix, i.e. the matrix that links the morphing basis to the

	components.







	calculate_morphing_weights() calculates the morphing weights w_b(theta) for a given parameter point theta
such that p(theta) = sum_b w_b(theta) p(theta_b).


	calculate_morphing_weight_gradient() calculates the gradient of the morphing weights, grad_theta w_b(theta).




Note that this class only implements the “theory morphing” (or, more specifically, “EFT morphing”) of the physics
parameters of interest. Nuisance parameter morphing is implemented in the NuisanceMorpher class.


	Parameters

	
	parameters_from_madminerOrderedDict or None, optional

	Parameters in the MadMiner.parameters convention. OrderedDict with keys equal to the parameter names and
values equal to tuples (LHA_block, LHA_ID, morphing_max_power, param_min, param_max)



	parameter_max_powerNone or list of int  or list of tuple of int, optional

	Only used if parameters_from_madminer is None. Maximal power with which each parameter contributes to
the squared matrix element. If tuples are given, gives this
maximal power for each of several operator configurations. Typically at tree level,
this maximal number is 2 for parameters that affect one vertex (e.g. only production
or only decay of a particle), and 4 for parameters that affect two vertices (e.g.
production and decay).



	parameter_rangeNone or list of tuple of float, optional

	Only used if parameters_from_madminer is None. Parameter range (param_min, param_max) for each parameter.









Methods







	calculate_morphing_matrix([basis])

	Calculates the morphing matrix that links the components to the basis benchmarks.



	calculate_morphing_weight_gradient(theta[, …])

	Calculates the gradient of the morphing weights, grad_i w_b(theta).



	calculate_morphing_weights(theta[, basis, …])

	Calculates the morphing weights w_b(theta) for a given morphing basis {theta_b}.



	evaluate_morphing([basis, morphing_matrix, …])

	Evaluates the expected sum of the squared morphing weights for a given basis.



	find_components([max_overall_power])

	Finds the components, i.e.



	optimize_basis([n_bases, …])

	Optimizes the morphing basis.



	set_basis([basis_from_madminer, …])

	Manually sets the basis benchmarks.



	set_components(components)

	Manually defines the components, i.e.







	
calculate_morphing_matrix(basis=None)

	Calculates the morphing matrix that links the components to the basis benchmarks.


	Parameters

	
	basisndarray or None, optional

	Manually specified morphing basis for which the morphing matrix is calculated. This array has shape
(n_basis_benchmarks, n_parameters). If None, the basis from the last call of set_basis() or
find_basis() is used. Default value: None.







	Returns

	
	morphing_matrixndarray

	Morphing matrix with shape (n_basis_benchmarks, n_components)














	
calculate_morphing_weight_gradient(theta, basis=None, morphing_matrix=None)

	Calculates the gradient of the morphing weights, grad_i w_b(theta).


	Parameters

	
	thetandarray

	Parameter point theta with shape (n_parameters,).



	basisndarray or None, optional

	Manually specified morphing basis for which the weights are calculated. This array has shape
(n_basis_benchmarks, n_parameters). If None, the basis from the last call of set_basis() or
find_basis() is used. Default value: None.



	morphing_matrixndarray or None, optional

	Manually specified morphing matrix for the given morphing basis. This array has shape
(n_basis_benchmarks, n_components). If None, the morphing matrix is calculated automatically. Default
value: None.







	Returns

	
	morphing_weight_gradientsndarray

	Morphing weights as an array with shape (n_parameters, n_basis_benchmarks,), where the first component
refers to the gradient direction.














	
calculate_morphing_weights(theta, basis=None, morphing_matrix=None)

	Calculates the morphing weights w_b(theta) for a given morphing basis {theta_b}.


	Parameters

	
	thetandarray

	Parameter point theta with shape (n_parameters,).



	basisndarray or None, optional

	Manually specified morphing basis for which the weights are calculated. This array has shape
(n_basis_benchmarks, n_parameters). If None, the basis from the last call of set_basis() or
find_basis() is used. Default value: None.



	morphing_matrixndarray or None, optional

	Manually specified morphing matrix for the given morphing basis. This array has shape
(n_basis_benchmarks, n_components). If None, the morphing matrix is calculated automatically. Default
value: None.







	Returns

	
	morphing_weightsndarray

	Morphing weights as an array with shape (n_basis_benchmarks,).














	
evaluate_morphing(basis=None, morphing_matrix=None, n_test_thetas=100, return_weights_and_thetas=False)

	Evaluates the expected sum of the squared morphing weights for a given basis.


	Parameters

	
	basisndarray or None, optional

	Manually specified morphing basis for which the weights are calculated. This array has shape
(n_basis_benchmarks, n_parameters). If None, the basis from the last call of set_basis() or
find_basis() is used. Default value: None.



	morphing_matrixndarray or None, optional

	Manually specified morphing matrix for the given morphing basis. This array has shape
(n_basis_benchmarks, n_components). If None, the morphing matrix is calculated automatically. Default
value: None.



	n_test_thetasint, optional

	Number of random parameter points used to evaluate the expected mean squared morphing weights. A larger
number will increase the run time of the optimization, but lead to better results. Default value: 100.



	return_weights_and_thetasbool, optional

	If True, results for each evaluation theta are returned, rather than taking their average. Default value:
False.







	Returns

	
	thetas_testndarray

	Random parameter points used for evaluation. Only returned if return_weights_and_thetas=True is used.



	squared_weightsndarray

	Squared summed morphing weights at each evaluation parameter point. Only returned if
return_weights_and_thetas=True is used.



	negative_expected_sum_squared_weightsfloat

	Negative expected sum of the square of the morphing weights. Objective function in the optimization.
Only returned with return_weights_and_thetas=False.














	
find_components(max_overall_power=4)

	Finds the components, i.e. the individual terms contributing to the squared matrix element.


	Parameters

	
	max_overall_powerint or tuple of int, optional

	The maximal sum of powers of all parameters contributing to the squared matrix element. If a tuple is given,
gives the maximal sum of powers for each of several operator configurations (see constructor).
Typically, if parameters can affect the couplings at n vertices, this number is 2n. Default value: 4.







	Returns

	
	componentsndarray

	Array with shape (n_components, n_parameters), where each entry gives the power with which a parameter
scales a given component.














	
optimize_basis(n_bases=1, fixed_benchmarks_from_madminer=None, fixed_benchmarks_numpy=None, n_trials=100, n_test_thetas=100)

	Optimizes the morphing basis. If either fixed_benchmarks_from_maxminer or fixed_benchmarks_numpy are not
None, then these will be used as fixed basis points and only the remaining part of the basis will be optimized.


	Parameters

	
	n_basesint, optional

	The number of morphing bases generated. If n_bases > 1, multiple bases are combined, and the
weights for each basis are reduced by a factor 1 / n_bases. Currently only the default choice of 1 is
fully implemented. Do not use any other value for now. Default value: 1.



	fixed_benchmarks_from_madminerOrderedDict or None, optional

	Input basis vectors in the MadMiner.benchmarks conventions. Default value: None.



	fixed_benchmarks_numpyndarray or None, optional

	Input basis vectors as a ndarray with shape (n_fixed_basis_points, n_parameters). Default value: None.



	n_trialsint, optional

	Number of random basis configurations tested in the optimization procedure. A larger number will increase
the run time of the optimization, but lead to better results. Default value: 100.



	n_test_thetasint, optional

	Number of random parameter points used to evaluate the expected mean squared morphing weights. A larger
number will increase the run time of the optimization, but lead to better results. Default value: 100.







	Returns

	
	basisOrderedDict or ndarray

	Optimized basis in the same format (MadMiner or numpy) as the parameters provided during instantiation.














	
set_basis(basis_from_madminer=None, basis_numpy=None, morphing_matrix=None)

	Manually sets the basis benchmarks.


	Parameters

	
	basis_from_madminerOrderedDict or None, optional

	Basis in the MadMiner.benchmarks conventions. Default value: None.



	basis_numpyndarray or None, optional

	Only used if basis_from_madminer is None. Basis as a ndarray with shape (n_components, n_parameters).



	morphing_matrixndarray or None, optional

	Manually provided morphing matrix. If None, the morphing matrix is calculated automatically. Default value:
None.







	Returns

	
	None

	












	
set_components(components)

	Manually defines the components, i.e. the individual terms contributing to the squared matrix element.


	Parameters

	
	componentsndarray

	Array with shape (n_components, n_parameters), where each entry gives the power with which a parameter
scales a given component. For instance, a typical signal, interference, background situation with one
parameter might be described by the components [[2], [1], [0]].







	Returns

	
	None

	
















	
class madminer.morphing.NuisanceMorpher(nuisance_parameters_from_madminer, benchmark_names, reference_benchmark)

	Bases: object

Morphing functionality for nuisance parameters.

For a typical MadMiner application, it is not necessary to use the morphing classes directly. The other MadMiner
classes use the morphing functions “under the hood” when needed.


	Parameters

	
	nuisance_parameters_from_madminerOrderedDict

	Nuisance parameters defined in the form {name: (benchmark_name_pos, benchmark_name_neg)}. Here
benchmark_name_pos refers to the name of the benchmark with nu_i = 1, while benchmark_name_neg is either None
or refers to the name of the benchmark with nu_i = -1.



	benchmark_nameslist

	The names of the benchmarks.



	reference_benchmarkstr

	Name of the reference benchmark.









Methods







	calculate_a(benchmark_weights)

	Calculates the first-order coefficients a_i(x) in dsigma(x |  theta, nu) / dsigma(x | theta, 0) = exp[ sum_i (a_i(x) nu_i + b_i(x) nu_i(x)^2 )].



	calculate_b(benchmark_weights)

	Calculates the second-order coefficients b_i(x) in dsigma(x |  theta, nu) / dsigma(x | theta, 0) = exp[ sum_i (a_i(x) nu_i + b_i(x) nu_i(x)^2 )].



	calculate_nuisance_factors(…)

	Calculates the rescaling of the event weights from non-central values of nuisance parameters.







	
calculate_a(benchmark_weights)

	Calculates the first-order coefficients a_i(x) in
dsigma(x |  theta, nu) / dsigma(x | theta, 0) = exp[ sum_i (a_i(x) nu_i + b_i(x) nu_i(x)^2 )].


	Parameters

	
	benchmark_weightsndarray

	Event weights dsigma(x | theta_i, nu_i) with shape (n_events, n_benchmarks). The benchmarks are expected
to be sorted in the same order as the keyword benchmark_names used during initialization, and the
nuisance benchmarks are expected to be rescaled to have the same physics parameters theta as the
reference_benchmark given during initialization.







	Returns

	
	andarray

	Coefficients a_i(x) with shape (n_nuisance_parameters, n_events).














	
calculate_b(benchmark_weights)

	Calculates the second-order coefficients b_i(x) in
dsigma(x |  theta, nu) / dsigma(x | theta, 0) = exp[ sum_i (a_i(x) nu_i + b_i(x) nu_i(x)^2 )].


	Parameters

	
	benchmark_weightsndarray

	Event weights dsigma(x | theta_i, nu_i) with shape (n_events, n_benchmarks). The benchmarks are expected
to be sorted in the same order as the keyword benchmark_names used during initialization, and the
nuisance benchmarks are expected to be rescaled to have the same physics parameters theta as the
reference_benchmark given during initialization.







	Returns

	
	bndarray

	Coefficients b_i(x) with shape (n_nuisance_parameters, n_events).














	
calculate_nuisance_factors(nuisance_parameters, benchmark_weights)

	Calculates the rescaling of the event weights from non-central values of nuisance parameters.


	Parameters

	
	nuisance_parametersndarray

	Values of the nuisance parameters nu, with shape (n_nuisance_parameters,).



	benchmark_weightsndarray

	Event weights dsigma(x | theta_i, nu_i) with shape (n_events, n_benchmarks). The benchmarks are expected
to be sorted in the same order as the keyword benchmark_names used during initialization, and the
nuisance benchmarks are expected to be rescaled to have the same physics parameters theta as the
reference_benchmark given during initialization.







	Returns

	
	nuisance_factorsndarray

	Nuisance factor dsigma(x |  theta, nu) / dsigma(x | theta, 0) with shape (n_events,).





















          

      

      

    

  

    
      
          
            
  
madminer.plotting module


	
madminer.plotting.plot_2d_morphing_basis(morpher, xlabel='$\\theta_0$', ylabel='$\\theta_1$', xrange=(-1.0, 1.0), yrange=(-1.0, 1.0), crange=(1.0, 100.0), resolution=100)

	Visualizes a morphing basis and morphing errors for problems with a two-dimensional parameter space.


	Parameters

	
	morpherMorpher

	Morpher instance with defined basis.



	xlabelstr, optional

	Label for the x axis. Default value: r’$        heta_0$’.



	ylabelstr, optional

	Label for the y axis. Default value: r’$        heta_1$’.



	xrangetuple of float, optional

	Range (min, max) for the x axis. Default value: (-1., 1.).



	yrangetuple of float, optional

	Range (min, max) for the y axis. Default value: (-1., 1.).



	crangetuple of float, optional

	Range (min, max) for the color map. Default value: (1., 100.).



	resolutionint, optional

	Number of points per axis for the rendering of the squared morphing weights. Default value: 100.







	Returns

	
	figureFigure

	Plot as Matplotlib Figure instance.














	
madminer.plotting.plot_distribution_of_information(xbins, xsecs, fisher_information_matrices, fisher_information_matrices_aux=None, xlabel=None, xmin=None, xmax=None, log_xsec=False, norm_xsec=True, epsilon=1e-09)

	Plots the distribution of the cross section together with the distribution of the Fisher information.


	Parameters

	
	xbinslist of float

	Bin boundaries.



	xsecslist of float

	Cross sections (in pb) per bin.



	fisher_information_matriceslist of ndarray

	Fisher information matrices for each bin.



	fisher_information_matrices_auxlist of ndarray or None, optional

	Additional Fisher information matrices for each bin (will be plotted with a dashed line).



	xlabelstr or None, optional

	Label for the x axis.



	xminfloat or None, optional

	Minimum value for the x axis.



	xmaxfloat or None, optional

	Maximum value for the x axis.



	log_xsecbool, optional

	Whether to plot the cross section on a logarithmic y axis.



	norm_xsecbool, optional

	Whether the cross sections are normalized to 1.



	epsilonfloat, optional

	Numerical factor.







	Returns

	
	figureFigure

	Plot as Matplotlib Figure instance.














	
madminer.plotting.plot_distributions(filename, observables=None, parameter_points=None, uncertainties='nuisance', nuisance_parameters=None, draw_nuisance_toys=None, normalize=False, log=False, observable_labels=None, n_bins=50, line_labels=None, colors=None, linestyles=None, linewidths=1.5, toy_linewidths=1.0, alpha=0.25, toy_alpha=0.75, n_events=None, n_toys=100, n_cols=3)

	Plots one-dimensional histograms of observables in a MadMiner file for a given set of benchmarks.


	Parameters

	
	filenamestr

	Filename of a MadMiner HDF5 file.



	observableslist of str or None, optional

	Which observables to plot, given by a list of their names. If None, all observables in the file
are plotted. Default value: None.



	parameter_pointslist of (str or ndarray) or None, optional

	Which parameter points to use for histogramming the data. Given by a list, each element can either be the name
of a benchmark in the MadMiner file, or an ndarray specifying any parameter point in a morphing setup. If None,
all physics (non-nuisance) benchmarks defined in the MadMiner file are plotted. Default value: None.



	uncertainties{“nuisance”, “none”}, optional

	Defines how uncertainty bands are drawn. With “nuisance”, the variation in cross section from all nuisance
parameters is added in quadrature. With “none”, no error bands are drawn.



	nuisance_parametersNone or list of int, optional

	If uncertainties is “nuisance”, this can restrict which nuisance parameters are used to draw the uncertainty
bands. Each entry of this list is the index of one nuisance parameter (same order as in the MadMiner file).



	draw_nuisance_toysNone or int, optional

	If not None and uncertainties is “nuisance”, sets the number of nuisance toy distributions that are drawn
(in addition to the error bands).



	normalizebool, optional

	Whether the distribution is normalized to the total cross section. Default value: False.



	logbool, optional

	Whether to draw the y axes on a logarithmic scale. Defaul value: False.



	observable_labelsNone or list of (str or None), optional

	x-axis labels naming the observables. If None, the observable names from the MadMiner file are used. Default
value: None.



	n_binsint, optional

	Number of histogram bins. Default value: 50.



	line_labelsNone or list of (str or None), optional

	Labels for the different parameter points. If None and if parameter_points is None, the benchmark names from
the MadMiner file are used. Default value: None.



	colorsNone or str or list of str, optional

	Matplotlib line (and error band) colors for the distributions. If None, uses default colors. Default value:
None.



	linestylesNone or str or list of str, optional

	Matplotlib line styles for the distributions. If None, uses default linestyles. Default value: None.



	linewidthsfloat or list of float, optional

	Line widths for the contours. Default value: 1.5.



	toy_linewidthsfloat or list of float or None, optional

	Line widths for the toy replicas, if uncertainties is “nuisance” and draw_nuisance_toys is not None. If None,
linewidths is used. Default value: 1.



	alphafloat, optional

	alpha value for the uncertainty bands. Default value: 0.25.



	toy_alphafloat, optional

	alpha value for the toy replicas, if uncertainties is “nuisance” and draw_nuisance_toys is not None. Default
value: 0.75.



	n_eventsNone or int, optional

	If not None, sets the number of events from the MadMiner file that will be analyzed and plotted. Default value:
None.



	n_toysint, optional

	Number of toy nuisance parameter vectors used to estimate the systematic uncertainties. Default value: 100.



	n_colsint, optional

	Number of columns of subfigures in the plot. Default value: 3.







	Returns

	
	figureFigure

	Plot as Matplotlib Figure instance.














	
madminer.plotting.plot_fisher_information_contours_2d(fisher_information_matrices, fisher_information_covariances=None, reference_thetas=None, contour_distance=1.0, xlabel='$\\theta_0$', ylabel='$\\theta_1$', xrange=(-1.0, 1.0), yrange=(-1.0, 1.0), labels=None, inline_labels=None, resolution=500, colors=None, linestyles=None, linewidths=1.5, alphas=1.0, alphas_uncertainties=0.25)

	Visualizes 2x2 Fisher information matrices as contours of constant Fisher distance from a reference point theta0.

The local (tangent-space) approximation is used: distances d(theta) are given by
d(theta)^2 = (theta - theta0)_i I_ij (theta - theta0)_j, summing over i and j.


	Parameters

	
	fisher_information_matriceslist of ndarray

	Fisher information matrices, each with shape (2,2).



	fisher_information_covariancesNone or list of (ndarray or None), optional

	Covariance matrices for the Fisher information matrices. Has to have the same length as
fisher_information_matrices, and each entry has to be None (no uncertainty) or a tensor with shape
(2,2,2,2). Default value: None.



	reference_thetasNone or list of (ndarray or None), optional

	Reference points from which the distances are calculated. If None, the origin (0,0) is used. Default value:
None.



	contour_distancefloat, optional.

	Distance threshold at which the contours are drawn. Default value: 1.



	xlabelstr, optional

	Label for the x axis. Default value: r’$        heta_0$’.



	ylabelstr, optional

	Label for the y axis. Default value: r’$        heta_1$’.



	xrangetuple of float, optional

	Range (min, max) for the x axis. Default value: (-1., 1.).



	yrangetuple of float, optional

	Range (min, max) for the y axis. Default value: (-1., 1.).



	labelsNone or list of (str or None), optional

	Legend labels for the contours. Default value: None.



	inline_labelsNone or list of (str or None), optional

	Inline labels for the contours. Default value: None.



	resolutionint

	Number of points per axis for the calculation of the distances. Default value: 500.



	colorsNone or str or list of str, optional

	Matplotlib line (and error band) colors for the contours. If None, uses default colors. Default value: None.



	linestylesNone or str or list of str, optional

	Matploitlib line styles for the contours. If None, uses default linestyles. Default value: None.



	linewidthsfloat or list of float, optional

	Line widths for the contours. Default value: 1.5.



	alphasfloat or list of float, optional

	Opacities for the contours. Default value: 1.



	alphas_uncertaintiesfloat or list of float, optional

	Opacities for the error bands. Default value: 0.25.







	Returns

	
	figureFigure

	Plot as Matplotlib Figure instance.














	
madminer.plotting.plot_fisherinfo_barplot(fisher_information_matrices, labels, determinant_indices=None, eigenvalue_colors=None, bar_colors=None)

	
	Parameters

	
	fisher_information_matriceslist of ndarray

	Fisher information matrices



	labelslist of str

	Labels for the x axis



	determinant_indiceslist of int or None, optional

	If not None, the determinants will be based only on the indices given here. Default value: None.



	eigenvalue_colorsNone or list of str

	Colors for the eigenvalue decomposition. If None, default colors are used. Default value: None.



	bar_colorsNone or list of str

	Colors for the determinant bars. If None, default colors are used. Default value: None.







	Returns

	
	figureFigure

	Plot as Matplotlib Figure instance.














	
madminer.plotting.plot_nd_morphing_basis_scatter(morpher, crange=(1.0, 100.0), n_test_thetas=1000)

	Visualizes a morphing basis and morphing errors with scatter plots between each pair of operators.


	Parameters

	
	morpherMorpher

	Morpher instance with defined basis.



	crangetuple of float, optional

	Range (min, max) for the color map. Default value: (1. 100.).



	n_test_thetasint, optional

	Number of random points evaluated. Default value: 1000.







	Returns

	
	figureFigure

	Plot as Matplotlib Figure instance.














	
madminer.plotting.plot_nd_morphing_basis_slices(morpher, crange=(1.0, 100.0), resolution=50)

	Visualizes a morphing basis and morphing errors with two-dimensional slices through parameter space.


	Parameters

	
	morpherMorpher

	Morpher instance with defined basis.



	crangetuple of float, optional

	Range (min, max) for the color map.



	resolutionint, optional

	Number of points per panel and axis for the rendering of the squared morphing weights. Default value: 50.







	Returns

	
	figureFigure

	Plot as Matplotlib Figure instance.

















          

      

      

    

  

    
      
          
            
  
madminer.sampling module


	
class madminer.sampling.SampleAugmenter(filename, disable_morphing=False, include_nuisance_parameters=True, debug=False)

	Bases: object

Sampling and data augmentation.

After the generated events have been analyzed and the observables and weights have been saved into a MadMiner file,
for instance with madminer.delphes.DelphesProcessor or madminer.lhe.LHEProcessor, the next step is typically
the generation of training and evaluation data for the machine learning algorithms. This generally involves two
(related) tasks: unweighting, i.e. the creation of samples that do not carry individual weights but follow some
distribution, and the extraction of the joint likelihood ratio and / or joint score (the “augmented data”).

After inializing SampleAugmenter with the filename of a MadMiner file, this is done with a single function call.
Depending on the downstream inference algorithm, there are different possibilities:


	SampleAugmenter.extract_samples_train_plain() creates plain training samples without augmented data.


	SampleAugmenter.extract_samples_train_local() creates training samples for local methods based on the score,
such as SALLY and SALLINO.


	SampleAugmenter.extract_samples_train_global() creates training samples for non-local methods based on density
estimation and the score, such as SCANDAL.


	SampleAugmenter.extract_samples_train_ratio() creates training samples for non-local, ratio-based methods
like RASCAL or ALICE.


	SampleAugmenter.extract_samples_train_more_ratios() does the same, but can extract joint ratios and scores
at more parameter points. This additional information  can be used efficiently in the setup with a “doubly
parameterized” likelihood ratio estimator that models the dependence on both the numerator and denominator
hypothesis.


	SampleAugmenter.extract_samples_test() creates evaluation samples for all methods.




Please see the tutorial for a walkthrough.

For the curious, let us explain these steps in a little bit more detail (assuming a morphing setup):


	The sample augmentation step starts from a set of events (x_i, z_i) together with corresponding weights for each
morphing basis point theta_b, p(x_i, z_i | theta_b).


	Morphing: Assume we want to generate data sampled from a parameter point theta, which is not necessarily one of
the basis points theta_b. Using the morphing structure, the event weights for p(x_i, z_i | theta) can be
calculated. Note that the events (phase-space points) (x_i, z_i) are not changed, only their weights.


	Unweighting: For the machine learning part, such a weighted event sample is not practical. Instead we aim for an
unweighted one, in which events can appear multiple times. If the user request N events (which can be larger
than the original number of events in the MadGraph runs), SampleAugmenter will draw N samples (x_i, z_i) from
the discrete distribution p(x_i, z_i | theta). In other words, it draws (with replacement) N of the original
events from MadGraph, with probabilities given by the morphing setup before. This is similar to what
np.random.choice() does.


	Augmentation: For each of the drawn samples, the morphing setup can be used to calculate the joint likelihood
ratio and / or the joint score (this depends on which SampleAugmenter function is called).





	Parameters

	
	filenamestr

	Path to MadMiner file (for instance the output of madminer.delphes.DelphesProcessor.save()).



	disable_morphingbool, optional

	If True, the morphing setup is not loaded from the file. Default value: False.



	include_nuisance_parametersbool, optional

	If True, nuisance parameters are taken into account. Default value: True.



	debugbool, optional

	If True, additional detailed debugging output is printed. Default value: False.









Methods







	extract_cross_sections(theta)

	Calculates the total cross sections for all specified thetas.



	extract_raw_data([theta, derivative])

	Returns all events together with the benchmark weights (if theta is None) or weights for a given theta.



	extract_samples_test(theta, n_samples, …)

	Extracts evaluation samples x ~ p(x|theta) without any augmented data.



	extract_samples_train_global(theta, …[, …])

	Extracts training samples x ~ p(x|theta) as well as the joint score t(x, z|theta), where theta is sampled from a prior.



	extract_samples_train_local(theta, …[, …])

	Extracts training samples x ~ p(x|theta) as well as the joint score t(x, z|theta).



	extract_samples_train_more_ratios(theta0, …)

	Extracts training samples x ~ p(x|theta0) and x ~ p(x|theta1) together with the class label y, the joint likelihood ratio r(x,z|theta0, theta1), and the joint score t(x,z|theta0).



	extract_samples_train_plain(theta, …[, …])

	Extracts plain training samples x ~ p(x|theta) without any augmented data.



	extract_samples_train_ratio(theta0, theta1, …)

	Extracts training samples x ~ p(x|theta0) and x ~ p(x|theta1) together with the class label y, the joint likelihood ratio r(x,z|theta0, theta1), and the joint score t(x,z|theta0).







	
extract_cross_sections(theta)

	Calculates the total cross sections for all specified thetas.


	Parameters

	
	thetatuple

	Tuple (type, value) that defines the parameter point or prior over parameter points at which the cross
section is calculated. Pass the output of the functions constant_benchmark_theta(),
multiple_benchmark_thetas(), constant_morphing_theta(), multiple_morphing_thetas(), or
random_morphing_thetas().







	Returns

	
	thetasndarray

	Parameter points with shape (n_thetas, n_parameters).



	xsecsndarray

	Total cross sections in pb with shape (n_thetas, ).



	xsec_uncertaintiesndarray

	Statistical uncertainties on the total cross sections in pb with shape (n_thetas, ).














	
extract_raw_data(theta=None, derivative=False)

	Returns all events together with the benchmark weights (if theta is None) or weights for a given theta.


	Parameters

	
	thetaNone or ndarray or str, optional

	If None, the function returns all benchmark weights. If str, the function returns the weights for a given
benchmark name. If ndarray, it uses morphing to calculate the weights for this value of theta. Default
value: None.



	derivativebool, optional

	If True and if theta is not None, the derivative of the weights with respect to theta are returned. Default
value: False.







	Returns

	
	xndarray

	Observables with shape (n_unweighted_samples, n_observables).



	weightsndarray

	If theta is None and derivative is False, benchmark weights with shape
(n_unweighted_samples, n_benchmarks_phys) in pb. If theta is not None and derivative is True, the gradient of
the weight for the given parameter with respect to theta with shape (n_unweighted_samples, n_gradients)
in pb. Otherwise, weights for the given parameter theta with shape (n_unweighted_samples,) in pb.














	
extract_samples_test(theta, n_samples, folder, filename, test_split=0.5, switch_train_test_events=False)

	Extracts evaluation samples x ~ p(x|theta) without any augmented data.


	Parameters

	
	thetatuple

	Tuple (type, value) that defines the parameter point or prior over parameter points for the
sampling. Pass the output of the functions constant_benchmark_theta(), multiple_benchmark_thetas(),
constant_morphing_theta(), multiple_morphing_thetas(), or random_morphing_thetas().



	n_samplesint

	Total number of events to be drawn.



	folderstr

	Path to the folder where the resulting samples should be saved (ndarrays in .npy format).



	filenamestr

	Filenames for the resulting samples. A prefix such as ‘x’ or ‘theta0’ as well as the extension
‘.npy’ will be added automatically.



	test_splitfloat or None, optional

	Fraction of events reserved for the evaluation sample (that will not be used for any training samples).
Default value: 0.5.



	switch_train_test_eventsbool, optional

	If True, this function generates a test sample from the events normally reserved for training samples.
Default value: False.







	Returns

	
	xndarray

	Observables with shape (n_samples, n_observables). The same information is saved as a file in the given
folder.



	thetandarray

	Parameter points used for sampling with shape (n_samples, n_parameters). The same information is saved as
a file in the given folder.














	
extract_samples_train_global(theta, n_samples, folder, filename, test_split=0.5, switch_train_test_events=False)

	Extracts training samples x ~ p(x|theta) as well as the joint score t(x, z|theta), where theta is sampled
from a prior. This can be used for inference methods such as SCANDAL.


	Parameters

	
	thetatuple

	Tuple (type, value) that defines the numerator parameter point or prior over parameter points for the
sampling. Pass the output of the functions constant_benchmark_theta(), multiple_benchmark_thetas(),
constant_morphing_theta(), multiple_morphing_thetas(), or random_morphing_thetas().



	n_samplesint

	Total number of events to be drawn.



	folderstr

	Path to the folder where the resulting samples should be saved (ndarrays in .npy format).



	filenamestr

	Filenames for the resulting samples. A prefix such as ‘x’ or ‘theta0’ as well as the extension
‘.npy’ will be added automatically.



	test_splitfloat or None, optional

	Fraction of events reserved for the evaluation sample (that will not be used for any training samples).
Default value: 0.5.



	switch_train_test_eventsbool, optional

	If True, this function generates a training sample from the events normally reserved for test samples.
Default value: False.







	Returns

	
	xndarray

	Observables with shape (n_samples, n_observables). The same information is saved as a file in the given
folder.



	thetandarray

	Parameter points used for sampling (and  evaluation of the joint score) with shape
(n_samples, n_parameters). The same information is saved as a file in the given folder.



	t_xzndarray

	Joint score evaluated at theta with shape (n_samples, n_parameters). The same information is saved as a
file in the given folder.














	
extract_samples_train_local(theta, n_samples, folder, filename, nuisance_score=False, test_split=0.5, switch_train_test_events=False, log_message=True)

	Extracts training samples x ~ p(x|theta) as well as the joint score t(x, z|theta). This can be used for
inference methods such as SALLY and SALLINO.


	Parameters

	
	thetatuple

	Tuple (type, value) that defines the parameter point for the sampling. This is also where the score is
evaluated. Pass the output of the functions constant_benchmark_theta() or constant_morphing_theta().



	n_samplesint

	Total number of events to be drawn.



	folderstr

	Path to the folder where the resulting samples should be saved (ndarrays in .npy format).



	filenamestr

	Filenames for the resulting samples. A prefix such as ‘x’ or ‘theta0’ as well as the extension
‘.npy’ will be added automatically.



	nuisance_scorebool, optional

	If True and if the sample contains nuisance parameters, the score with respect to the nuisance parameters
(at the default position) will also be calculated. Otherwise, only the score with respect to the
physics parameters is calculated. Default: False.



	test_splitfloat or None, optional

	Fraction of events reserved for the evaluation sample (that will not be used for any training samples).
Default value: 0.5.



	switch_train_test_eventsbool, optional

	If True, this function generates a training sample from the events normally reserved for test samples.
Default value: False.



	log_messagebool, optional

	If True, logging output. This option is only designed for internal use.







	Returns

	
	xndarray

	Observables with shape (n_samples, n_observables). The same information is saved as a file in the given
folder.



	thetandarray

	Parameter points used for sampling (and  evaluation of the joint score) with shape
(n_samples, n_parameters). The same information is saved as a file in the given folder.



	t_xzndarray

	Joint score evaluated at theta with shape (n_samples, n_parameters + n_nuisance_parameters) (if
nuisance_score is True) or (n_samples, n_parameters). The same information is saved as a
file in the given folder.














	
extract_samples_train_more_ratios(theta0, theta1, n_samples, folder, filename, additional_thetas=None, test_split=0.5, switch_train_test_events=False)

	Extracts training samples x ~ p(x|theta0) and x ~ p(x|theta1) together with the class label y, the joint
likelihood ratio r(x,z|theta0, theta1), and the joint score t(x,z|theta0). This information can be used in
inference methods such as CARL, ROLR, CASCAL, and RASCAL.

With the keyword additional_thetas, this function allows to extract joint ratios and scores
at more parameter points than just theta0 and theta1. This additional information can be used efficiently
in the setup with a “doubly parameterized” likelihood ratio estimator that models the dependence on both the
numerator and denominator hypothesis.


	Parameters

	
	theta0 :

	Tuple (type, value) that defines the numerator parameter point or prior over parameter points for the
sampling. Pass the output of the functions constant_benchmark_theta(), multiple_benchmark_thetas(),
constant_morphing_theta(), multiple_morphing_thetas(), or random_morphing_thetas().



	theta1 :

	Tuple (type, value) that defines the denominator parameter point or prior over parameter points for the
sampling. Pass the output of the functions constant_benchmark_theta(), multiple_benchmark_thetas(),
constant_morphing_theta(), multiple_morphing_thetas(), or random_morphing_thetas().



	n_samplesint

	Total number of events to be drawn.



	folderstr

	Path to the folder where the resulting samples should be saved (ndarrays in .npy format).



	filenamestr

	Filenames for the resulting samples. A prefix such as ‘x’ or ‘theta0’ as well as the extension
‘.npy’ will be added automatically.



	additional_thetaslist of tuple or None

	list of tuples (type, value) that defines additional theta points at which ratio and score are evaluated,
and which are then used to create additional training data points. These can be efficiently used only in
the “doubly parameterized” setup where a likelihood ratio estimator models the dependence of the likelihood
ratio on both the numerator and denominator hypothesis. Pass the output of  the helper functions
constant_benchmark_theta(), multiple_benchmark_thetas(), constant_morphing_theta(),
multiple_morphing_thetas(), or random_morphing_thetas(). Default value: None.



	test_splitfloat or None, optional

	Fraction of events reserved for the evaluation sample (that will not be used for any training samples).
Default value: 0.5.



	switch_train_test_eventsbool, optional

	If True, this function generates a training sample from the events normally reserved for test samples.
Default value: False.







	Returns

	
	xndarray

	Observables with shape (n_samples, n_observables). The same information is saved as a file in the given
folder.



	theta0ndarray

	Numerator parameter points with shape (n_samples, n_parameters). The same information is saved as
a file in the given folder.



	theta1ndarray

	Denominator parameter points with shape (n_samples, n_parameters). The same information is saved as
a file in the given folder.



	yndarray

	Class label with shape (n_samples, n_parameters). y=0 (1) for events sample from the numerator
(denominator) hypothesis. The same information is saved as a file in the given folder.



	r_xzndarray

	Joint likelihood ratio with shape (n_samples,). The same information is saved as a file in the given
folder.



	t_xzndarray

	Joint score evaluated at theta0 with shape (n_samples, n_parameters). The same information is saved as a
file in the given folder.














	
extract_samples_train_plain(theta, n_samples, folder, filename, test_split=0.5, switch_train_test_events=False)

	Extracts plain training samples x ~ p(x|theta) without any augmented data. This can be use for standard
inference methods such as ABC, histograms of observables, or neural density estimation techniques. It can also
be used to create validation or calibration samples.


	Parameters

	
	thetatuple

	Tuple (type, value) that defines the parameter point or prior over parameter points for the
sampling. Pass the output of the functions constant_benchmark_theta(), multiple_benchmark_thetas(),
constant_morphing_theta(), multiple_morphing_thetas(), or random_morphing_thetas().



	n_samplesint

	Total number of events to be drawn.



	folderstr

	Path to the folder where the resulting samples should be saved (ndarrays in .npy format).



	filenamestr

	Filenames for the resulting samples. A prefix such as ‘x’ or ‘theta0’ as well as the extension
‘.npy’ will be added automatically.



	test_splitfloat or None, optional

	Fraction of events reserved for the evaluation sample (that will not be used for any training samples).
Default value: 0.5.



	switch_train_test_eventsbool, optional

	If True, this function generates a training sample from the events normally reserved for test samples.
Default value: False.







	Returns

	
	xndarray

	Observables with shape (n_samples, n_observables). The same information is saved as a file in the given
folder.



	thetandarray

	Parameter points used for sampling with shape (n_samples, n_parameters). The same information is saved as
a file in the given folder.














	
extract_samples_train_ratio(theta0, theta1, n_samples, folder, filename, test_split=0.5, switch_train_test_events=False)

	Extracts training samples x ~ p(x|theta0) and x ~ p(x|theta1) together with the class label y, the joint
likelihood ratio r(x,z|theta0, theta1), and the joint score t(x,z|theta0). This information can be used in
inference methods such as CARL, ROLR, CASCAL, and RASCAL.


	Parameters

	
	theta0tuple

	Tuple (type, value) that defines the numerator parameter point or prior over parameter points for the
sampling. Pass the output of the functions constant_benchmark_theta(), multiple_benchmark_thetas(),
constant_morphing_theta(), multiple_morphing_thetas(), or random_morphing_thetas().



	theta1tuple

	Tuple (type, value) that defines the denominator parameter point or prior over parameter points for the
sampling. Pass the output of the functions constant_benchmark_theta(), multiple_benchmark_thetas(),
constant_morphing_theta(), multiple_morphing_thetas(), or random_morphing_thetas().



	n_samplesint

	Total number of events to be drawn.



	folderstr

	Path to the folder where the resulting samples should be saved (ndarrays in .npy format).



	filenamestr

	Filenames for the resulting samples. A prefix such as ‘x’ or ‘theta0’ as well as the extension
‘.npy’ will be added automatically.



	test_splitfloat or None, optional

	Fraction of events reserved for the evaluation sample (that will not be used for any training samples).
Default value: 0.5.



	switch_train_test_eventsbool, optional

	If True, this function generates a training sample from the events normally reserved for test samples.
Default value: False.







	Returns

	
	xndarray

	Observables with shape (n_samples, n_observables). The same information is saved as a file in the given
folder.



	theta0ndarray

	Numerator parameter points with shape (n_samples, n_parameters). The same information is saved as
a file in the given folder.



	theta1ndarray

	Denominator parameter points with shape (n_samples, n_parameters). The same information is saved as
a file in the given folder.



	yndarray

	Class label with shape (n_samples, n_parameters). y=0 (1) for events sample from the numerator
(denominator) hypothesis. The same information is saved as a file in the given folder.



	r_xzndarray

	Joint likelihood ratio with shape (n_samples,). The same information is saved as a file in the given
folder.



	t_xzndarray

	Joint score evaluated at theta0 with shape (n_samples, n_parameters). The same information is saved as a
file in the given folder.


















	
madminer.sampling.combine_and_shuffle(input_filenames, output_filename, k_factors=None, overwrite_existing_file=True, debug=False)

	Combines multiple MadMiner files into one, and shuffles the order of the events.

Note that this function assumes that all samples are generated with the same setup, including identical benchmarks
(and thus morphing setup). If it is used with samples with different settings, there will be wrong results!
There are no explicit cross checks in place yet!


	Parameters

	
	input_filenameslist of str

	List of paths to the input MadMiner files.



	output_filenamestr

	Path to the combined MadMiner file.



	k_factorsfloat or list of float, optional

	Multiplies the weights in input_filenames with a universal factor (if k_factors is a float) or with independent
factors (if it is a list of float). Default value: None.



	overwrite_existing_filebool, optional

	If True and if the output file exists, it is overwritten. Default value: True.



	debugbool, optional

	If True, additional detailed debugging output is printed. Default value: False.







	Returns

	
	None

	












	
madminer.sampling.constant_benchmark_theta(benchmark_name)

	Utility function to be used as input to various SampleAugmenter functions, specifying a single parameter benchmark.


	Parameters

	
	benchmark_namestr

	Name of the benchmark (as in madminer.core.MadMiner.add_benchmark)







	Returns

	
	outputtuple

	Input to various SampleAugmenter functions














	
madminer.sampling.constant_morphing_theta(theta)

	Utility function to be used as input to various SampleAugmenter functions, specifying a single parameter point theta
in a morphing setup.


	Parameters

	
	thetandarray or list

	Parameter point with shape (n_parameters,)







	Returns

	
	outputtuple

	Input to various SampleAugmenter functions














	
madminer.sampling.multiple_benchmark_thetas(benchmark_names)

	Utility function to be used as input to various SampleAugmenter functions, specifying multiple parameter benchmarks.


	Parameters

	
	benchmark_nameslist of str

	List of names of the benchmarks (as in madminer.core.MadMiner.add_benchmark)







	Returns

	
	outputtuple

	Input to various SampleAugmenter functions














	
madminer.sampling.multiple_morphing_thetas(thetas)

	Utility function to be used as input to various SampleAugmenter functions, specifying multiple parameter points
theta in a morphing setup.


	Parameters

	
	thetasndarray or list of lists or list of ndarrays

	Parameter points with shape (n_thetas, n_parameters)







	Returns

	
	outputtuple

	Input to various SampleAugmenter functions














	
madminer.sampling.random_morphing_thetas(n_thetas, priors)

	Utility function to be used as input to various SampleAugmenter functions, specifying random parameter points
sampled from a prior in a morphing setup.


	Parameters

	
	n_thetasint

	Number of parameter points to be sampled



	priorslist of tuples

	Priors for each parameter is characterized by a tuple of the form (prior_shape, prior_param_0, prior_param_1).
Currently, the supported prior_shapes are flat, in which case the two other parameters are the lower and upper
bound of the flat prior, and gaussian, in which case they are the mean and standard deviation of a Gaussian.







	Returns

	
	outputtuple

	Input to various SampleAugmenter functions
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