MadMiner Documentation
Release 0.9.5

Johann Brehmer, Felix Kling, Irina Espejo, Sinclert Perez, Kyle Cr

Oct 17, 2022






10

11

12

13

14

15

16

Introduction to MadMiner
Getting started

Using MadMiner
Trouble-shooting

References
madminer.analysis package
madminer.core package
madminer.delphes package
madminer.fisherinformation package
madminer.lhe package
madminer.likelihood package
madminer.limits package
madminer.ml package
madminer.plotting package
madminer.sampling package

Indices and tables

Python Module Index

Index

SITES

11
13
15
19
29
37
55
63
71
81
113
123
139
141

143







MadMiner Documentation, Release 0.9.5

Johann Brehmer, Felix Kling, Irina Espejo, and Kyle Cranmer

Machine learning-based inference for particle physics

SITES 1



MadMiner Documentation, Release 0.9.5

2 SITES



CHAPTER
ONE

INTRODUCTION TO MADMINER

Particle physics processes are usually modelled with complex Monte-Carlo simulations of the hard process, parton
shower, and detector interactions. These simulators typically do not admit a tractable likelihood function: given a
(potentially high-dimensional) set of observables, it is usually not possible to calculate the probability of these ob-
servables for some model parameters. Particle physicists usually tackle this problem of “likelihood-free inference” by
hand-picking a few “good” observables or summary statistics and filling histograms of them. But this conventional
approach discards the information in all other observables and often does not scale well to high-dimensional problems.

In the three publications “Constraining Effective Field Theories with Machine Learning”, “A Guide to Constraining
Effective Field Theories with Machine Learning”, and “Mining gold from implicit models to improve likelihood-free
inference”, a new approach has been developed. In a nutshell, additional information is extracted from the simulations
that is closely related to the matrix elements that determine the hard process. This “augmented data” can be used to
train neural networks to efficiently approximate arbitrary likelihood ratios. We playfully call this process “mining gold”
from the simulator, since this information may be hard to get, but turns out to be very valuable for inference.

But the gold does not have to be hard to mine. This package automates these inference strategies. It wraps around the
simulators MadGraph and Pythia, with different options for the detector simulation. All steps in the analysis chain from
the simulation to the extraction of the augmented data, their processing, and the training and evaluation of the neural
estimators are implemented.



https://arxiv.org/abs/1805.00013
https://arxiv.org/abs/1805.00020
https://arxiv.org/abs/1805.00020
https://arxiv.org/abs/1805.12244
https://arxiv.org/abs/1805.12244

MadMiner Documentation, Release 0.9.5

4 Chapter 1. Introduction to MadMiner



CHAPTER
TWO

GETTING STARTED

2.1 Simulator dependencies

Make sure the following tools are installed and running:

* MadGraph (we have tested our setup with version 2.8.0+). See MadGraph’s website for installation instructions.
Note that MadGraph requires a Fortran compiler as well as Python 3.7+.

¢ For the analysis of systematic uncertainties, LHAPDFG6 has to be installed with Python support (see also the
documentation of MadGraph’s systematics tool).

For the detector simulation part, there are different options. For simple parton-level analyses, we provide a bare-bones
option to calculate truth-level observables which do not require any additional packages. We have also implemented a
fast detector simulation based on Delphes with a flexible framework to calculate observables. Using this adds additional
requirements:

echo "install pythia8" | python3 <MadGraph_dir>/bin/mg5_aMC
echo "install Delphes" | python3 <MadGraph_dir>/bin/mg5_aMC

Finally, Delphes can be replaced with another detector simulation, for instance a full detector simulation based with
Geant4. In this case, the user has to implement code that runs the detector simulation, calculates the observables,
and stores the observables and weights in the HDFS5 file. The DelphesProcessor and LHEProcessor classes might
provide some guidance for this.

2.2 Install MadMiner

To install the MadMiner package with all its Python dependencies, run pip install madminer.

To get the latest development version as well as the tutorials, clone the GitHub repository and run pip install -e
. from the repository main folder.



https://launchpad.net/mg5amcnlo
https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Systematics
https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Systematics
https://github.com/madminer-tool/madminer

MadMiner Documentation, Release 0.9.5

6 Chapter 2. Getting started



CHAPTER
THREE

USING MADMINER

We provide different resources that help with the use of MadMiner:

3.1 Paper

Our main publication MadMiner: Machine-learning-based inference for particle physics provides an overview over this
package. We recommend reading it first before jumping into the code.

3.2 Tutorials

In the examples folder in this repository, we provide two tutorials. The first is called 7oy simulator, and it is based on a
toy problem rather than a full particle-physics simulation. It demonstrates inference with MadMiner without spending
much time on the more technical steps of running the simulation. The second, called Particle physics, shows all steps
of a particle-physics analysis with MadMiner.

3.3 Typical workflow

Here we illustrate the structure of data analysis with MadMiner:



https://arxiv.org/abs/1907.10621
https://github.com/madminer-tool/madminer/tree/master/examples
https://github.com/madminer-tool/madminer/blob/master/examples/tutorial_toy_simulator/tutorial_toy_simulator.ipynb
https://github.com/madminer-tool/madminer/tree/master/examples/tutorial_particle_physics

MadMiner Documentation, Release 0.9.5

Input / Output MadMiner classes External simulators Files
Physics process, WadGrapnicads
theory model, > (dat)
simulation setup -
= |
©}
£ Parameter space, _
e benchmarks, i
g morphing,
E nuisance parameters v
e )
= MadMiner —> MadGraph —> FELERIT e
m (Ihe)
Pythia — Hadron-level events
Y (-hepmc)
(%]
w
= v
S Detector-level event
= DelphesReader = Delphes —p | etectorlevelevents
75 (.root)
[aa]
(@]
~
Observables, <
cuts >
n
<
= Sampling setup —» < %
-
= SampleAugmenter s
< =
n ~ Training data <
A >
(.npy)
LikelihoodEstimator |«
s‘ RatioEstimator
=8 ScoreEstimator -
. > Tra.med ML model
(json, .pt, .npy)
(&)
S Parameters ——p *
o <
w . .
z Fisherinformation
=
< Fisher information ¢—
LN
w
U  Observed events, <
= .
o parameter grid <
"'% AsymptoticLimits
ch Best fit, p-values €¢—
8 Chapter 3. Using MadMiner




MadMiner Documentation, Release 0.9.5

* madminer. core contains the functions to set up the process, parameter space, morphing, and to steer MadGraph
and Pythia.

* madminer.lhe and madminer.delphes contain two example implementations of a detector simulation and
observable calculation. This part can easily be swapped out depending on the use case.

e Inmadminer.sampling, train and test samples for the machine learning part are generated and augmented with
the joint score and joint ratio.

e madminer.ml contains an implementation of the machine learning part. The user can train and evaluate estima-
tors for the likelihood ratio or score.

¢ Finally, mnadminer. fisherinformation contains functions to calculate the Fisher information, both on parton
level or detector level, in the full process, individual observables, or the total cross section.

3.4 Technical documentation

The madminer API is documented on here as well, just look through the pages linked on the left.

3.5 Support

If you have any questions, please chat to us in our Gitter community.

3.4. Technical documentation 9


https://gitter.im/madminer/community

MadMiner Documentation, Release 0.9.5

10 Chapter 3. Using MadMiner



CHAPTER
FOUR

TROUBLE-SHOOTING

If you are having issues with MadMiner, please go through the following check list:

4.1 Event generation crashing

Is MadGraph correctly installed? Can you generate events with MadGraph on its own, including the reweighing
option?

* If you are using Pythia and Delphes: Are their installations working? Can you run MadGraph with Pythia, and
can you run Delphes on the resulting HepMC sample?

* If you are using PDF or scale uncertainties: Is LHAPDF installed with Python support?

4.2 Key errors when reading LHE files

* Do LHE files contain multiple weights, one for each benchmark, for each event?

4.3 Zero events after reading LHE or Delphes file

* Are there typos in the definitions of required observables, cuts, or efficiencies? If an observable, cut, or efficiency
causes all events to be discarded, DEBUG-Ievel logging output should help you narrow down the source.

4.4 Neural network output does not make sense

« Start simple: one or two hidden layers are often enough for a start.
* Does the loss go down during training? If not, try changing the learning rate.

* Are the loss on the training and validation sample very different? This is the trademark sign of over-training. Try
a simpler network architecture, more data, or early stopping.

11



MadMiner Documentation, Release 0.9.5

12 Chapter 4. Trouble-shooting



CHAPTER

FIVE
REFERENCES
5.1 Citations
If you use MadMiner, please cite our main publication,
@article{Brehmer:2019xox,
author = "Brehmer, Johann and Kling, Felix and Espejo, Irina and Cranmer,.
—Kyle",
title = "{MadMiner: Machine learning-based inference for particle physics}
journal = "Comput. Softw. Big Sci.",
volume = "4",
year = "2020",
number ="1",
pages — ll3ll’
doi = "10.1007/s41781-020-0035-2",
eprint = "1907.10621",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
SLACcitation = "%%CITATION = ARXIV:1907.10621;%%"
}
The code itself can be cited as
@misc{MadMiner_code,
author = "Brehmer, Johann and Kling, Felix and Espejo, Irina and Cranmer,.
—Kyle",
title = "{MadMiner}",
doi = "10.5281/zenodo.1489147",
url = {https://github.com/madminer-tool/madminer}
}

The main references for the implemented inference techniques are the following:
* CARL: 1506.02169.
¢ MAF: 1705.07057.
e CASCAL, RASCAL, ROLR, SALLY, SALLINO, SCANDAL.:
— 1805.00013.
— 1805.00020.

13



https://arxiv.org/abs/1506.02169
https://arxiv.org/abs/1705.07057
https://arxiv.org/abs/1805.00013
https://arxiv.org/abs/1805.00020

MadMiner Documentation, Release 0.9.5

- 1805.12244.
* ALICE, ALICES: 1808.00973.

5.2 Acknowledgements

We are immensely grateful to all contributors and bug reporters! In particular, we would like to thank Zubair Bhatti,
Philipp Englert, Lukas Heinrich, Alexander Held, Samuel Homiller and Duccio Pappadopulo.

The SCANDAL inference method is based on Masked Autoregressive Flows, where our implementation is a PyTorch
port of the original code by George Papamakarios, available at this repository.

14 Chapter 5. References


https://arxiv.org/abs/1805.12244
https://arxiv.org/abs/1808.00973
https://github.com/madminer-tool/madminer/graphs/contributors
https://arxiv.org/abs/1705.07057
https://github.com/gpapamak/maf

CHAPTER
SIX

MADMINER.ANALYSIS PACKAGE

6.1 Submodules

6.2 madminer.analysis.dataanalyzer module

class madminer.analysis.dataanalyzer.DataAnalyzer (filename, disable_morphing=False,
include_nuisance_parameters=True)

Bases: object
Collects common functionality that is used when analysing data in the MadMiner file.
Parameters

filename
[str] Path to MadMiner file (for instance the output of mad-

miner.delphes.DelphesProcessor.save()).

disable_morphing
[bool, optional] If True, the morphing setup is not loaded from the file. Default value: False.

include_nuisance_parameters
[bool, optional] If True, nuisance parameters are taken into account. Default value: True.

Methods
event_Jloader([start, end, batch_size, ...]) Yields batches of events in the MadMiner file.
weighted_events([theta, nu, start_event, ...]) Returns all events together with the benchmark
weights (if theta is None) or weights for a given theta.
xsec_gradients(thetas[, nus, partition, ...]) Returns the gradient of total cross sections with re-
spect to parameters.
xsecs([thetas, nus, partition, test_split, ...]) Returns the total cross sections for benchmarks or pa-

rameter points.

event_loader (start=0, end=None, batch_size=100000, include_nuisance_parameters=None,
generated_close_to=None, return_sampling_ids=False)

Yields batches of events in the MadMiner file.
Parameters

start
[int, optional] First event index to load

15



MadMiner Documentation, Release 0.9.5

end
[int or None, optional] Last event index to load

batch_size
[int, optional] Batch size

include_nuisance_parameters
[bool, optional] Whether nuisance parameter benchmarks are included in the returned data

generated_close_to
[None or ndarray, optional] If None, this function yields all events. Otherwise, it just yields
just the events that were generated at the closest benchmark point to a given parameter point.

return_sampling_ids
[bool, optional] If True, the iterator returns the sampling IDs in addition to observables and
weights.

Yields

observations
[ndarray] Event data

weights
[ndarray] Event weights

sampling_ids
[int] Sampling IDs (benchmark used for sampling for signal events, -1 for background
events). Only returned if return_sampling_ids = True was set.

weighted_events (theta=None, nu=None, start_event=None, end_event=None, derivative=Fulse,
generated_close_to=None, n_draws=None)

Returns all events together with the benchmark weights (if theta is None) or weights for a given theta.
Parameters

theta
[None or ndarray or str, optional] If None, the function returns all benchmark weights. If str,
the function returns the weights for a given benchmark name. If ndarray, it uses morphing
to calculate the weights for this value of theta. Default value: None.

nu
[None or ndarray, optional] If None, the nuisance parameters are set to their nominal values.
Otherwise, and if theta is an ndarray, sets the values of the nuisance parameters.

start_event
[int] Index (in the MadMiner file) of the first event to consider.

end_event
[int] Index (in the MadMiner file) of the last unweighted event to consider.

derivative
[bool, optional] If True and if theta is not None, the derivative of the weights with respect
to theta are returned. Default value: False.

generated_close_to
[None or int, optional] Only returns benchmarks generated from this benchmark (and back-
ground events). Default value: None.

n_draws
[None or int, optional] If not None, returns only this number of events, drawn randomly.

Returns

16 Chapter 6. madminer.analysis package



MadMiner Documentation, Release 0.9.5

X
[ndarray] Observables with shape (n_unweighted_samples, n_observables).

weights
[ndarray] If theta is None and derivative is False, benchmark weights with shape
(n_unweighted_samples, n_benchmarks) in pb. If theta is not None and derivative is
True, the gradient of the weight for the given parameter with respect to theta with shape
(n_unweighted_samples, n_gradients) in pb. Otherwise, weights for the given parameter
theta with shape (n_unweighted_samples,) in pb.

xsec_gradients (thetas, nus=None, partition="all’, test_split=0.2, validation_split=0.2, gradients="all’,
batch_size=100000, generated_close_to=None)

Returns the gradient of total cross sections with respect to parameters.
Parameters

thetas
[list of (ndarray or str), optional] If None, the function returns all benchmark cross sections.
Otherwise, it returns the cross sections for a series of parameter points that are either given
by their benchmark name (as a str), their benchmark index (as an int), or their parameter
value (as an ndarray, using morphing). Default value: None.

nus
[None or list of (None or ndarray), optional] If None, the nuisance parameters are set to
their nominal values (0), i.e. no systematics are taken into account. Otherwise, the list
has to have the same number of elements as thetas, and each entry can specify nuisance
parameters at nominal value (None) or a value of the nuisance parameters (ndarray).

partition

EXINT3 CLINNT3

[{“train”, “test”,

9 <

validation”, “all”’}, optional] Which events to use. Default: “all”.

test_split
[float, optional] Fraction of events reserved for testing. Default value: 0.2.

validation_split
[float, optional] Fraction of weighted events reserved for validation. Default value: 0.2.

gradients
[{“all”, “theta”, “nu”}, optional] Which gradients to calculate. Default value: “all”.

batch_size
[int, optional] Size of the batches of events that are loaded into memory at the same time.
Default value: 100000.

generated_close_to
[None or ndarray, optional] If not None, only events originally generated from the closest
benchmark to this parameter point will be used. Default value : None.

Returns

xsecs_gradients
[ndarray] Calculated cross section gradients in pb with shape (n_gradients,).

xsecs (thetas=None, nus=None, partition="all’, test_split=0.2, validation_split=0.2,
include_nuisance_benchmarks=True, batch_size=100000, generated_close_to=None)

Returns the total cross sections for benchmarks or parameter points.
Parameters

thetas
[None or list of (ndarray or str), optional] If None, the function returns all benchmark cross

6.2. madminer.analysis.dataanalyzer module 17



MadMiner Documentation, Release 0.9.5

sections. Otherwise, it returns the cross sections for a series of parameter points that are
either given by their benchmark name (as a str), their benchmark index (as an int), or their
parameter value (as an ndarray, using morphing). Default value: None.

nus
[None or list of (None or ndarray), optional] If None, the nuisance parameters are set to
their nominal values (0), i.e. no systematics are taken into account. Otherwise, the list
has to have the same number of elements as thetas, and each entry can specify nuisance
parameters at nominal value (None) or a value of the nuisance parameters (ndarray).
partition

ELINT3 99 <

[{“train”, “test”,

ELINTS

validation”, “all”}, optional] Which event partition to use. Default: “all”.

test_split
[float, optional] Fraction of events reserved for testing. Default value: 0.2.

validation_split
[float, optional] Fraction of weighted events reserved for validation. Default value: 0.2.

include_nuisance_benchmarks
[bool, optional] Whether to include nuisance benchmarks if thetas is None. Default value:
True.

batch_size
[int, optional] Size of the batches of events that are loaded into memory at the same time.
Default value: 100000.

generated_close_to
[None or ndarray, optional] If not None, only events originally generated from the closest
benchmark to this parameter point will be used. Default value : None.

Returns

Xsecs
[ndarray] Calculated cross sections in pb.

xsec_uncertainties
[ndarray] Cross-section uncertainties in pb. Basically calculated as sum(weights*#2)**0.5.

6.3 Module contents

18 Chapter 6. madminer.analysis package



CHAPTER
SEVEN

MADMINER.CORE PACKAGE

7.1 Submodules

7.2 madminer.core.madminer module

class madminer.core.madminer.MadMiner

Bases: object

The central class to manage parameter spaces, benchmarks, and the generation of events through MadGraph and
Pythia.

An instance of this class is the starting point of most MadMiner applications. It is typically used in four steps:
¢ Defining the parameter space through MadMiner.add_parameter

* Defining the benchmarks, i.e. the points at which the squared matrix elements will be evalu-
ated in MadGraph, with MadMiner.add_benchmark() or, if operator morphing is used, with Mad-
Miner.set_benchmarks_from_morphing()

* Saving this setup with MadMiner.save() (it can be loaded in a new instance with MadMiner.load())

* Running MadGraph and Pythia with the appropriate settings with MadMiner.run() or Mad-
Miner.run_multiple() (the latter allows the user to combine runs from multiple run cards and sampling
points)

Please see the tutorial for a hands-on introduction to its methods.

19



MadMiner Documentation, Release 0.9.5

Methods

add_benchmark (parameter_values], ...]) Manually adds an individual benchmark, that is, a pa-
rameter point that will be evaluated by MadGraph.

add_parameter(lha_block, lha_id[, ...]) Adds an individual parameter.

add_systematics(effect[, systematic_name, ...])

Parameters

finite_differences([epsilon]) Adds benchmarks so that the score can be computed
from finite differences

load(filename[, disable_morphing]) Loads MadMiner setup from a file.

reweight_existing_sample(...[, ...]) High-level function that adds the weights required for
MadMiner to an existing sample.

run(mg_directory, proc_card_file, ...[, ...]) High-level function that creates the the MadGraph

process, all required cards, and prepares or runs the
event generation for one combination of cards.
run_multiple(mg_directory, proc_card_file, ...) High-level function that creates the the Mad-
Graph process, all required cards, and prepares or
runs the event generation for multiple combina-
tions of run_cards or importance samplings (sam-
ple_benchmarks).
save(filename) Saves MadMiner setup into a file.
set_benchmarks(benchmarks|, verbose]) Manually sets all benchmarks, that is, parameter
points that will be evaluated by MadGraph.
set_morphing([max_overall_power, n_bases, ...]) Sets up the morphing environment.
set_parameters(parameters) Manually sets all parameters, overwriting previously
added parameters.

add_benchmark (parameter_values: Dict(str, float], benchmark_name: Optional[str] = None, verbose: float
= True)

Manually adds an individual benchmark, that is, a parameter point that will be evaluated by MadGraph.
Parameters

parameter_values
[dict] The keys of this dict should be the parameter names and the values the corresponding
parameter values.

benchmark_name
[str or None, optional] Name of benchmark. If None, a default name is used. Default value:
None.

verbose
[bool, optional] If True, prints output about each benchmark. Default value: True.

Returns
None
Raises

RuntimeError
If a benchmark with the same name already exists, if parameter_values is not a dict, or if a
key of parameter_values does not correspond to a defined parameter.

add_parameter (lha_block, lha_id, parameter_name=None, param_card_transform=None,
morphing_max_power=2, parameter_range=(0.0, 1.0))

20 Chapter 7. madminer.core package



MadMiner Documentation, Release 0.9.5

Adds an individual parameter.
Parameters

lTha_block
[str] The name of the LHA block as used in the param_card. Case-sensitive.

lha_id
[int] The LHA id as used in the param_card.

parameter_name
[str or None] An internal name for the parameter. If None, a the default ‘benchmark_i’ is
used.

morphing_max_power
[int] The maximal power with which this parameter contributes to the squared matrix el-
ement of the process of interest. Typically at tree level, this maximal number is 2 for
parameters that affect one vertex (e.g. only production or only decay of a particle), and 4
for parameters that affect two vertices (e.g. production and decay). Default value: 2.

param_card_transform
[None or str] Represents a one-parameter function mapping the parameter (“theta”) to the
value that should be written in the parameter cards. This str is parsed by Python’s eval()
function, and “theta” is parsed as the parameter value. Default value: None.

parameter_range
[tuple of float] The range of parameter values of primary interest. Only affects the basis
optimization. Default value: (0., 1.).

Returns
None

add_systematics (effect, systematic_name=None, norm_variation=1.1, scale="mu’', scale_variations=(0.5,
1.0, 2.0), pdf _variation="CT10")

Parameters

effect
[{“norm”, “scale”, “pdf’}] Type of the nuisance parameter. If “norm”, it will affect the
overall normalization of one or multiple samples in the process. If “scale”, the nuisance
parameter effect will be determined by varying factorization or regularization scales (de-
pending on scale_variation and scales). If “pdf”, the effect of the nuisance parameters will
be determined by varying the PDF used.

systematic_name
[None or str, optional]

scale
[{“mu”, “mur”, “muf’}, optional] If type is “scale”, this sets whether only the regulariza-

tion scale (“mur’), only the factorization scale (“muf”), or both simultaneously (“mu’) are
varied. Default value: “mu”.

norm_variation
[float, optional] If type is “norm”, this sets the relative effect of the nuisance parameter on
the cross section at the “plus 1 sigma” variation. 1.1 corresponds to a 10% increase, 0.9 to
a 10% decrease relative to the nominal cross section. Default value: 1.1.

scale_variations
[tuple of float, optional] If type is “scale”, this sets how the regularization and / or factor-

madminer.core.madminer module 21



MadMiner Documentation, Release 0.9.5

ization scales are varied. A tuple like (0.5, 1.0, 2.0) specifies the factors with which they
are varied. Default value: (0.5, 1.0, 2.0).

pdf_variation
[str, optional] If type is “pdf”, defines the PDF set for the variation. The option is passed
along to the —pdf option of MadGraph’s systematics module. See https://cp3.irmp.ucl.ac.
be/projects/madgraph/wiki/Systematics for a list. The option “CT10” would, as an exam-
ple, run over all the eigenvectors of the CTEQ10 set. Default value: “CT10”.

Returns
None
finite_differences(epsilon=0.01)
Adds benchmarks so that the score can be computed from finite differences
Don’t add any more benchmarks or parameters after calling this!

load (filename, disable_morphing=False)

Loads MadMiner setup from a file. All parameters, benchmarks, and morphing settings are overwritten.
See save for more details.

Parameters

filename
[str] Path to the MadMiner file.

disable_morphing
[bool, optional] If True, the morphing setup is not loaded from the file. Default value:
False.

Returns
None

reweight_existing_sample(mg_process_directory, run_name, param_card_template_file,
sample_benchmark, reweight_benchmarks=None,
only_prepare_script=False, log_directory=None, initial_command=None)

High-level function that adds the weights required for MadMiner to an existing sample.

If only_prepare_scripts=True, the event generation is not run directly, but a bash script is created in <pro-
cess_folder>/madminer/run.sh that will start the event generation with the correct settings.

Currently does not support adding systematics.
Parameters

mg_process_directory
[str] Path to the MG process directory. If None, MadMiner uses ./MG_process.

run_name
[str] Run name.

param_card_template_file
[str] Path to a param card that will be used as template to create the appropriate param cards
for these runs.

sample_benchmark
[str] The name of the benchmark used to generate this sample.

reweight_benchmarks
[list of str or None] Lists the names of benchmarks to which the sample should be
reweighted. If None, all benchmarks (except sample_benchmarks) are used.

22 Chapter 7. madminer.core package


https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Systematics
https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Systematics

MadMiner Documentation, Release 0.9.5

only_prepare_script
[bool, optional] If True, the event generation is not started, but instead a run.sh script is
created in the process directory. Default value: False.

log_directory

[str or None, optional] Directory for log files with the MadGraph output. If None, ./logs is
used. Default value: None.

initial_command
[str or None, optional] Initial shell commands that have to be executed before MG is run
(e.g. to load a virtual environment). Default value: None.

Returns
None

run(mg_directory, proc_card_file, param_card_template_file, run_card_file=None,
mg_process_directory=None, pythia8_card_file=None, configuration_file=None,
sample_benchmark=None, is_background=False, only_prepare_script=False,
ufo_model_directory=None, log_directory=None, temp_directory=None, initial_command=None,
systematics=None, order='LO’, python_executable=None)

High-level function that creates the the MadGraph process, all required cards, and prepares or runs the
event generation for one combination of cards.

If only_prepare_scripts=True, the event generation is not run directly, but a bash script is created in <pro-
cess_folder>/madminer/run.sh that will start the event generation with the correct settings.

High-level function that creates the the MadGraph process, all required cards, and prepares or runs the
event generation for multiple combinations of run_cards or importance samplings (sample_benchmarks).

If only_prepare_scripts=True, the event generation is not run directly, but a bash script is created in <pro-
cess_folder>/madminer/run.sh that will start the event generation with the correct settings.

Parameters

mg_directory
[str] Path to the MadGraph 5 base directory.

proc_card_file
[str] Path to the process card that tells MadGraph how to generate the process.

param_card_template_file
[str] Path to a param card that will be used as template to create the appropriate param cards
for these runs.

run_card_file
[str] Paths to the MadGraph run card. If None, the default run_card is used.

mg_process_directory
[str or None, optional] Path to the MG process directory. If None, MadMiner uses
/MG_process. Default value: None.

pythia8_card_file
[str or None, optional] Path to the MadGraph Pythia8 card. If None, the card present in the
process folder is used. Default value: None.

configuration_file
[str, optional] Path to the MadGraph me5_configuration card. If None, the card present in
the process folder is used. Default value: None.

sample_benchmark
[list of str or None, optional] Lists the names of benchmarks that should be used to sample

7.2.

madminer.core.madminer module 23



MadMiner Documentation, Release 0.9.5

events. A different sampling does not change the expected differential cross sections, but
will change which regions of phase space have many events (small variance) or few events
(high variance). If None, the benchmark added first is used. Default value: None.

is_background
[bool, optional] Should be True for background processes, i.e. process in which the differ-
ential cross section does not depend on the parameters (i.e. is the same for all benchmarks).
In this case, no reweighting is run, which can substantially speed up the event generation.
Default value: False.

only_prepare_script
[bool, optional] If True, the event generation is not started, but instead a run.sh script is
created in the process directory. Default value: False.

ufo_model_directory
[str or None, optional] Path to an UFO model directory that should be used, but is not
yet installed in mg_directory/models. The model will be copied to the MadGraph model
directory before the process directory is generated. (Default value = None.

log_directory
[str or None, optional] Directory for log files with the MadGraph output. If None, ./logs is
used. Default value: None.

temp_directory
[str or None, optional] Path to a temporary directory. If None, a system default is used.
Default value: None.

initial_command
[str or None, optional] Initial shell commands that have to be executed before MG is run
(e.g. to load a virtual environment). Default value: None.

systematics
[None or list of str, optional] If list of str, defines which systematics are used for this run.

order
[‘'LO’ or ‘NLO’, optional] Differentiates between LO and NLO order runs. Minor changes
to writing, reading and naming cards. Default value: ‘LO’

python_executable
[None or str, optional] Provides a path to the Python executable that should be used to call
MadMiner. Default: None.

Returns
None

run_multiple(mg_directory, proc_card_file, param_card_template_file, run_card_files,
mg_process_directory=None, pythia8_card_file=None, configuration_file=None,
sample_benchmarks=None, is_background=False, only_prepare_script=False,
ufo_model_directory=None, log_directory=None, temp_directory=None,
initial_command=None, systematics=None, order='LO’, python_executable=None)

High-level function that creates the the MadGraph process, all required cards, and prepares or runs the
event generation for multiple combinations of run_cards or importance samplings (sample_benchmarks).

If only_prepare_scripts=True, the event generation is not run directly, but a bash script is created in <pro-
cess_folder>/madminer/run.sh that will start the event generation with the correct settings.

Parameters

mg_directory
[str] Path to the MadGraph 5 base directory.

24 Chapter 7. madminer.core package



MadMiner Documentation, Release 0.9.5

proc_card_file
[str] Path to the process card that tells MadGraph how to generate the process.

param_card_template_file
[str] Path to a param card that will be used as template to create the appropriate param cards
for these runs.

run_card_files
[list of str] Paths to the MadGraph run card.

mg_process_directory
[str or None, optional] Path to the MG process directory. If None, MadMiner uses
/MG_process. Default value: None.

pythia8_card_file
[str, optional] Path to the MadGraph Pythia8 card. If None, the card present in the process
folder is used. Default value: None.

configuration_file
[str, optional] Path to the MadGraph me5_configuration card. If None, the card present in
the process folder is used. Default value: None.

sample_benchmarks
[List of str or None, optional] Lists the names of benchmarks that should be used to sample
events. A different sampling does not change the expected differential cross sections, but
will change which regions of phase space have many events (small variance) or few events
(high variance). If None, a run is started for each of the benchmarks, which should map
out all regions of phase space well. Default value: None.

is_background
[bool, optional] Should be True for background processes, i.e. process in which the differ-
ential cross section does not depend on the parameters (i.e. is the same for all benchmarks).
In this case, no reweighting is run, which can substantially speed up the event generation.
Default value: False.

only_prepare_script
[bool, optional] If True, the event generation is not started, but instead a run.sh script is
created in the process directory. Default value: False.

ufo_model_directory
[str or None, optional] Path to an UFO model directory that should be used, but is not
yet installed in mg_directory/models. The model will be copied to the MadGraph model
directory before the process directory is generated. (Default value = None)

log_directory
[str or None, optional] Directory for log files with the MadGraph output. If None, ./logs is
used. Default value: None.

temp_directory
[str or None, optional] Path to a temporary directory. If None, a system default is used.
Default value: None.

initial_command
[str or None, optional] Initial shell commands that have to be executed before MG is run
(e.g. to load a virtual environment). If not specified and python2_override is True, it adds
the user-installed Python2 binaries to the PATH. Default value: None.

systematics
[None or list of str, optional] If list of str, defines which systematics are used for these runs.

7.2. madminer.core.madminer module 25



MadMiner Documentation, Release 0.9.5

order
[‘'LO’ or ‘NLO’, optional] Differentiates between LO and NLO order runs. Minor changes
to writing, reading and naming cards. Default value: ‘LO’

python_executable
[None or str, optional] Provides a path to the Python executable that should be used to call
MadMiner. Default: None.

Returns
None

save (filename)

Saves MadMiner setup into a file.
The file format follows the HDF5 standard. The saved information includes:
¢ the parameter definitions,
* the benchmark points,
* the systematics setup (if defined), and
* the morphing setup (if defined).

This file is an important input to later stages in the analysis chain, including the processing of generated
events, extraction of training samples, and calculation of Fisher information matrices. In these downstream
tasks, additional information will be written to the MadMiner file, including the observations and event
weights.

Parameters

filename
[str] Path to the MadMiner file.

Returns
None

set_benchmarks (benchmarks: Union[Dict[str, dict], List[dict]], verbose: bool = True)

Manually sets all benchmarks, that is, parameter points that will be evaluated by MadGraph. Calling this
function overwrites all previously defined benchmarks.

Parameters

benchmarks
[dict or list] Specifies all benchmarks. If None, all benchmarks are reset. If dict, the keys are
the benchmark names and the values the Benchmark instances. If list, the entries are dicts
{parameter_name:value} (and the benchmark names are chosen automatically). Default
value: None.

verbose
[bool, optional] If True, prints output about each benchmark. Default value: True.

Returns
None

set_morphing (max_overall_power=4, n_bases=1, include_existing_benchmarks=True, n_trials=100,
n_test_thetas=100)

Sets up the morphing environment.

Sets benchmarks, i.e. parameter points that will be evaluated by MadGraph, for a morphing algorithm,
and calculates all information required for morphing. Morphing is a technique that allows MadMax to

26 Chapter 7. madminer.core package



MadMiner Documentation, Release 0.9.5

infer the full probability distribution p(x_i | theta) for each simulated event x_i and any theta, not just the
benchmarks.

The morphing basis is optimized with respect to the expected mean squared morphing weights over the
parameter region of interest. If keep_existing_benchmarks=True, benchmarks defined previously will be
incorporated in the morphing basis and only the remaining basis points will be optimized.

Note that any subsequent call to set_benchmarks or add_benchmark will overwrite the morphing
setup. The correct order is therefore to manually define benchmarks first, using set_benchmarks
or add_benchmark, and then to create the morphing setup and complete the basis by calling
set_benchmarks_from_morphing(keep_existing_benchmarks=True).

Parameters

max_overall_power
[int, optional] The maximal sum of powers of all parameters contributing to the squared
matrix element. Typically, if parameters can affect the couplings at n vertices, this number
is 2n. Default value: 4.

n_bases
[int, optional] The number of morphing bases generated. If n_bases > 1, multiple bases
are combined, and the weights for each basis are reduced by a factor 1 / n_bases. Currently
only the default choice of 1 is fully implemented. Do not use any other value for now.
Default value: 1.

include_existing_benchmarks
[bool, optional] If True, the previously defined benchmarks are included in the morphing
basis. In that case, the number of free parameters in the optimization routine is reduced.
If False, the existing benchmarks will still be simulated, but are not part of the morphing
routine. Default value: True.

n_trials
[int, optional] Number of random basis configurations tested in the optimization procedure.
A larger number will increase the run time of the optimization, but lead to better results.
Default value: 100.

n_test_thetas
[int, optional] Number of random parameter points used to evaluate the expected mean
squared morphing weights. A larger number will increase the run time of the optimization,
but lead to better results. Default value: 100.

Returns
None

set_parameters (parameters: Union[Dict(str, AnalysisParameter], List[tuple]])
Manually sets all parameters, overwriting previously added parameters.

Parameters

parameters
[dict or list] If parameters is an dict, the keys should be str and give the parameter names,
and the values are AnalysisParameter model instances. If parameters is a list, the items
should be tuples of the form (LHA_block, LHA_ID).

Returns

None

7.2. madminer.core.madminer module 27



MadMiner Documentation, Release 0.9.5

7.3 Module contents

28 Chapter 7. madminer.core package



CHAPTER
EIGHT

MADMINER.DELPHES PACKAGE

8.1 Submodules

8.2 madminer.delphes.delphes_reader module

class madminer.delphes.delphes_reader.DelphesReader (filename)

Bases: object

Detector simulation with Delphes and simple calculation of observables.

After setting up the parameter space and benchmarks and running MadGraph and Pythia, all of which is organized
in the madminer.core.MadMiner class, the next steps are the simulation of detector effects and the calculation
of observables. Different tools can be used for these tasks, please feel free to implement the detector simulation
and analysis routine of your choice.

This class provides an example implementation based on Delphes. Its workflow consists of the following steps:

L]

Initializing the class with the filename of a MadMiner HDF5 file (the output of mad-
miner.core.MadMiner.save())

Adding one or multiple event samples produced by MadGraph and Pythia in DelphesProces-
sor.add_sample().

Running Delphes on the samples that require it through DelphesProcessor.run_delphes().
Optionally, acceptance cuts for all visible particles can be defined with DelphesProcessor.set_acceptance().

Defining observables through DelphesProcessor.add_observable() or DelphesProces-
sor.add_observable_from_function(). A simple set of default observables is provided in Delphes-
Processor.add_default_observables()

Optionally, cuts can be set with DelphesProcessor.add_cut()

Calculating the observables from the Delphes ROOT files with  DelphesProces-
sor.analyse_delphes_samples()

Saving the results with DelphesProcessor.save()

Please see the tutorial for a detailed walk-through.

Parameters

filename
[str or None, optional] Path to MadMiner file (the output of mad-
miner.core.MadMiner.save()). Default value: None.

29



MadMiner Documentation, Release 0.9.5

Methods

add_cut(definition[, required])

Adds a cut as a string that can be parsed by Python's
eval() function and returns a bool.

add_default_observables([n_leptons_max, ...])

Adds a set of simple standard observables: the four-
momenta (parameterized as E, pT, eta, phi) of the
hardest visible particles, and the missing transverse
energy.

add_observable(name, definition[, required, ...])

Adds an observable as a string that can be parsed by
Python's eval() function.

add_observable_from_function(name, fn[, ...])

Adds an observable defined through a function.

add_sample(hepmc_filename, ...[, ...])

Adds a sample of simulated events.

analyse_delphes_samples([generator_truth, ...])

Main function that parses the Delphes samples
(ROQT files), checks acceptance and cuts, and ex-
tracts the observables and weights.

reset_cuts()

Resets all cuts.

reset_observables()

Resets all observables.

run_delphes(delphes_directory, delphes_card)

Runs the fast detector simulation Delphes on all
HepMC samples added so far for which it hasn't been
run yet.

save(filename_out[, shuffle])

Saves the observable definitions, observable values,
and event weights in a MadMiner file.

set_acceptance([pt_min_e, pt_min_mu, ...])

Sets acceptance cuts for all visible particles.

add_cut (definition, required=False)

Adds a cut as a string that can be parsed by Python’s eval() function and returns a bool.

Parameters

definition

[str] An expression that can be parsed by Python’s eval() function and returns a bool: True
for the event to pass this cut, False for it to be rejected. In the definition, all visible particles
can be used: e, mu, j, a, and [ provide lists of electrons, muons, jets, photons, and leptons
(electrons and muons combined), in each case sorted by descending transverse momen-
tum. met provides a missing ET object. visible and all provide access to the sum of all
visible particles and the sum of all visible particles plus MET, respectively. In addition,
MadMinerParticle have properties charge and pdg_id, which return the charge in units of
elementary charges (i.e. an electron has e[0].charge = -1.), and the PDG particle ID. For
instance, “len(e) >= 2” requires at least two electrons passing the acceptance cuts, while
“muf[0].charge > 0.” specifies that the hardest muon is positively charged.

required

[bool, optional] Whether the cut is passed if the observable cannot be parsed. Default value:

False.
Returns

None

add_default_observables (n_leptons_max=2, n_photons_max=2, n_jets_max=2, include_met=True,
include_visible_sum=True, include_numbers=True, include_charge=True)

Adds a set of simple standard observables: the four-momenta (parameterized as E, pT, eta, phi) of the
hardest visible particles, and the missing transverse energy.

Parameters

30

Chapter 8. madminer.delphes package



MadMiner Documentation, Release 0.9.5

n_leptons_max
[int, optional] Number of hardest leptons for which the four-momenta are saved. Default
value: 2.

n_photons_max
[int, optional] Number of hardest photons for which the four-momenta are saved. Default
value: 2.

n_jets_max
[int, optional] Number of hardest jets for which the four-momenta are saved. Default value:
2.

include_met
[bool, optional] Whether the missing energy observables are stored. Default value: True.

include_visible_sum
[bool, optional] Whether observables characterizing the sum of all particles are stored.
Default value: True.

include_numbers
[bool, optional] Whether the number of leptons, photons, and jets is saved as observable.
Default value: True.

include_charge
[bool, optional] Whether the lepton charge is saved as observable. Default value: True.

Returns
None

add_observable (name, definition, required=False, default=None)

Adds an observable as a string that can be parsed by Python’s eval() function.
Parameters

name
[str] Name of the observable. Since this name will be used in eval() calls for cuts, this
should not contain spaces or special characters.

definition

[str] An expression that can be parsed by Python’s eval() function. As objects, the visible
particles can be used: e, mu, j, a, and [ provide lists of electrons, muons, jets, photons,
and leptons (electrons and muons combined), in each case sorted by descending transverse
momentum. met provides a missing ET object. visible and all provide access to the sum of
all visible particles and the sum of all visible particles plus MET, respectively. In addition,
MadMinerParticle have properties charge and pdg_id, which return the charge in units of
elementary charges (i.e. an electron has e[0].charge = -1.), and the PDG particle ID. For
instance, “abs(j[0].phi - j[1].phi)” defines the azimuthal angle between the two hardest
jets.

required
[bool, optional] Whether the observable is required. If True, an event will only be retained
if this observable is successfully parsed. For instance, any observable involving “j[1]”
will only be parsed if there are at least two jets passing the acceptance cuts. Default value:
False.

default
[float or None, optional] If required=False, this is the placeholder value for observables
that cannot be parsed. None is replaced with np.nan. Default value: None.

Returns

. madminer.delphes.delphes_reader module 31



MadMiner Documentation, Release 0.9.5

None

add_observable_from_function(name, fn, required=False, default=None)
Adds an observable defined through a function.

Parameters

name
[str] Name of the observable. Since this name will be used in eval() calls for cuts, this
should not contain spaces or special characters.

fn
[function] A function with signature observable(leptons, photons, jets, met) where the input
arguments are lists of MadMinerParticle instances and a float is returned. The function
should raise a RuntimeError to signal that it is not defined.

required
[bool, optional] Whether the observable is required. If True, an event will only be retained
if this observable is successfully parsed. For instance, any observable involving “j[1]”
will only be parsed if there are at least two jets passing the acceptance cuts. Default value:
False.

default
[float or None, optional] If required=False, this is the placeholder value for observables
that cannot be parsed. None is replaced with np.nan. Default value: None.

Returns
None

add_sample (hepmc_filename, sampled_from_benchmark, is_background=False, delphes_filename=None,
lhe_filename=None, k_factor=1.0, weights='lhe’, systematics=None)

Adds a sample of simulated events. A HepMC file (from Pythia) has to be provided always, since some
relevant information is only stored in this file. The user can optionally provide a Delphes file, in this case
run_delphes() does not have to be called.

By default, the weights are read out from the Delphes file and their names from the HepMC file. There are
some issues with current MadGraph versions that lead to Pythia not storing the weights. As work-around,
MadMiner supports reading weights from the LHE file (the observables still come from the Delphes file).
To enable this, use weights="lhe”.

Parameters

hepmc_filename
[str] Path to the HepMC event file (with extension ‘.hepmc’ or “.hepmc.gz’).

sampled_from_benchmark
[str] Name of the benchmark that was used for sampling in this event file (the keyword
sample_benchmark of madminer.core. MadMiner.run()).

is_background
[bool, optional] Whether the sample is a background sample (i.e. without benchmark
reweighting).

delphes_filename
[str or None, optional] Path to the Delphes event file (with extension ‘.root’). If None, the
user has to call run_delphes(), which will create this file. Default value: None.

lhe_filename
[None or str, optional] Path to the LHE event file (with extension ‘.lhe’ or ‘.lhe.gz’). This
is only needed if weights is “lhe”.

32 Chapter 8. madminer.delphes package



MadMiner Documentation, Release 0.9.5

k_factor
[float, optional] Multiplies the cross sections found in the sample. Default value: 1.

weights

[{“delphes™, “lhe”}, optional] If “delphes”, the weights are read out from the Delphes
ROOT file, and their names are taken from the HepMC file. If “lhe” (and lhe_filename
is not None), the weights are taken from the LHE file (and matched with the observables
from the Delphes ROOT file). The “delphes” behaviour is generally better as it minimizes
the risk of mismatching observables and weights, but for some MadGraph and Delphes
versions there are issues with weights not being saved in the HepMC and Delphes ROOT
files. In this case, setting weights to “lhe” and providing the unweighted LHE file from
MadGraph may be an easy fix. Default value: “lhe”.

systematics
[None or list of str, optional] List of systematics associated with this sample. Default value:
None.

Returns
None
analyse_delphes_samples (generator_truth=False, delete_delphes_files=False,
reference_benchmark=None, parse_lhe_events_as_xml=True)
Main function that parses the Delphes samples (ROOT files), checks acceptance and cuts, and extracts the
observables and weights.

Parameters

generator_truth
[bool, optional] If True, the generator truth information (as given out by Pythia) will be
parsed. Detector resolution or efficiency effects will not be taken into account.

delete_delphes_files
[bool, optional] If True, the Delphes ROOT files will be deleted after extracting the infor-
mation from them. Default value: False.

reference_benchmark
[str or None, optional] The weights at the nuisance benchmarks will be rescaled to some
reference theta benchmark: dsigma(x|theta_sampling(x),nu) -> dsigma(x|theta_ref,nu) =
dsigma(x|theta_sampling(x),nu) * dsigma(x|theta_ref,0) / dsigma(x|theta_sampling(x),0).
This sets the name of the reference benchmark. If None, the first one will be used. Default
value: None.

parse_lhe_events_as_xml
[bool, optional] Decides whether the LHE events are parsed with an XML parser (more
robust, but slower) or a text parser (less robust, faster). Default value: True.

Returns
None

reset_cuts()
Resets all cuts.

reset_observables()
Resets all observables.
run_delphes (delphes_directory, delphes_card, initial_command=None, log_file=None)

Runs the fast detector simulation Delphes on all HepMC samples added so far for which it hasn’t been run
yet.

8.2.

madminer.delphes.delphes_reader module 33



MadMiner Documentation, Release 0.9.5

Parameters

delphes_directory
[str] Path to the Delphes directory.

delphes_card
[str] Path to a Delphes card.

initial_command
[str or None, optional] Initial bash commands that have to be executed before Delphes is
run (e.g. to load the correct virtual environment). Default value: None.

log_file
[str or None, optional] Path to log file in which the Delphes output is saved. Default value:
None.

Returns
None

save (filename_out, shuffle=True)

Saves the observable definitions, observable values, and event weights in a MadMiner file. The parameter,
benchmark, and morphing setup is copied from the file provided during initialization. Nuisance benchmarks
found in the HepMC file are added.

Parameters

filename_out
[str] Path to where the results should be saved.

shuffle
[bool, optional] If True, events are shuffled before being saved. That’s important when
there are multiple distinct samples (e.g. signal and background). Default value: True.

Returns
None
set_acceptance (pr_min_e=None, pt_min_mu=None, pt_min_a=None, pt_min_j=None, eta_max_e=None,
eta_max_mu=None, eta_max_a=None, eta_max_j=None)

Sets acceptance cuts for all visible particles. These are taken into account before observables and cuts are
calculated.

Parameters

pt_min_e
[float or None, optional] Minimum electron transverse momentum in GeV. None means no
acceptance cut. Default value: None.

pt_min_mu
[float or None, optional] Minimum muon transverse momentum in GeV. None means no
acceptance cut. Default value: None.

pt_min_a
[float or None, optional] Minimum photon transverse momentum in GeV. None means no
acceptance cut. Default value: None.

pt_min_j
[float or None, optional] Minimum jet transverse momentum in GeV. None means no ac-
ceptance cut. Default value: None.

34 Chapter 8. madminer.delphes package



MadMiner Documentation, Release 0.9.5

eta_max_e
[float or None, optional] Maximum absolute electron pseudorapidity. None means no ac-
ceptance cut. Default value: None.

eta_max_mu
[float or None, optional] Maximum absolute muon pseudorapidity. None means no accep-
tance cut. Default value: None.

eta_max_a
[float or None, optional] Maximum absolute photon pseudorapidity. None means no ac-
ceptance cut. Default value: None.

eta_max_j
[float or None, optional] Maximum absolute jet pseudorapidity. None means no acceptance
cut. Default value: None.

Returns

None

8.3 Module contents

8.3. Module contents

35



MadMiner Documentation, Release 0.9.5

36

Chapter 8. madminer.delphes package



CHAPTER
NINE

MADMINER.FISHERINFORMATION PACKAGE

9.1 Submodules

9.2 madminer.fisherinformation.geometry module

class madminer.fisherinformation.geometry.InformationGeometry

Bases: object
Functions to calculate limits using Information Geometry.

After initializing the InformationGeometry class, a Fisher Information needs to be provided using one of the
following functions

* InformationGeometry.information_from_formula() defines the Fisher Information explicitly as function of
the theory parameters theta.

e InformationGeometry.information_from_grid() loads a grid of Fisher Information which is then interpo-
lated.

Using information geometrical methods, the function InformationGeometry.distance_contours() then calculates
the distance contours and equivalently the p-values throughout parameter space.

Methods

distance_contours(theta0, grid_ranges, ...) Finds the distance values from the point thetaQ and
the corresponding p-value within the parameter space
bounded by grid_ranges.

find_trajectory(theta0, dtheta0, limits[, ...]) Finds the geodesic trajectory starting at a parameter
point theta0 going in the initial direction dtheta0.

information_from_formula(formula, dimen- Explicitly defines the Fisher Information as function

sion) of the theory parameter theta through a formula that
can be evaluated using eval().

information_from_grid(theta_grid, ...[, ...]) Loads a grid of coordinates and corresponding Fisher

Information, which is then interpolated.

distance_contours (thetaO, grid_ranges, grid_resolutions, stepsize=None, ntrajectories=None,
continous_sampling=False, return_trajectories=False)

Finds the distance values from the point thetaO and the corresponding p-value within the parameter space
bounded by grid_ranges.

Parameters

37



MadMiner Documentation, Release 0.9.5

theta0
[ndarray] Parameter point thetaO at which the geodesic trajectory starts.

grid_ranges
[List of (tuple of float)] Specifies the boundaries of the parameter grid in which the trajectory
is evaluated. It should be [[min, max], [min, max], ..., [min, max], where the list goes over
all parameters and min and max are float.

grid_resolutions
[list of int] Resolution of the parameter space grid on which the p-values are evaluated.
The individual entries specify the number of points along each parameter individually.

stepsize
[float or None, optional] Maximal stepsize |Delta theta| during numerical integration in
parameter space. If None, stepsize = min([(max-min)/20 for (min,max) in grid_ranges]).
Default: None

ntrajectories
[int or None, optional] Number of sampled trajectories. If None, ntrajectories = 20 times
the number of dimensions. Default: None

continous_sampling
[bool, optional] If n_dimension is 2, the trajectories are sampled continously in the angular
direction. Default: False

return_trajectories
[bool, optional] Returns the trajectories (parameter points and distances). Default: False

Returns

theta_grid
[ndarray] Parameter points at which the p-values are evaluated with shape (n_grid_points,
n_dimension).

p_values
[ndarray] Observed p-values for each parameter point on the grid, with shape
(n_grid_points,).

p_values
[ndarray] Interpolated distance from theta( for each parameter point on the grid, with shape
(n_grid_points,).

(list_of_theta, list_of distance)
[(ndarray,ndarray)] Only returned if return_trajectories is True. List of parameter points
theta (n_points, n_dimension) and List of distances from the staring point thetaO (n_points,
).

find_trajectory (theta0, dtheta0, limits, stepsize=1)

Finds the geodesic trajectory starting at a parameter point theta0 going in the initial direction dtheta0.
Parameters

theta0
[ndarray] Parameter point thetaO at which the geodesic trajectory starts.

dtheta0
[ndarray] Initial direction dthetaO of the geodesic
limits
[list of (tuple of float)] Specifies the boundaries of the parameter grid in which the trajectory

is evaluated. It should be [[min, max], [min, max], ..., [min, max], where the list goes over
all parameters and min and max are float.

38 Chapter 9. madminer.fisherinformation package



MadMiner Documentation, Release 0.9.5

stepsize
[int, optional] Maximal stepsize |Delta theta| during numerical integration in parameter
space. $Default: 1

Returns

list_of theta
[ndarray] List of parameter points theta (n_points, n_dimension).

list_of_distance
[ndarray] List of distances from the staring point theta0 (n_points, ).
information_from_formula (formula, dimension)

Explicitly defines the Fisher Information as function of the theory parameter theta through a formula that
can be evaluated using eval().

Parameters
formula
[str] Explicit definition of the Fisher Information as ndarray, which can be
a function of the n-dimensional theory parameter theta. Example:  for-

mula="np.array([[1+theta[0],1],[1,2*theta[1]**2]])”

dimension
[int] Dimensionality of the theory parameter space.

information_from_grid(theta_grid, fisherinformation_grid, option="smooth’, inverse='exact")
Loads a grid of coordinates and corresponding Fisher Information, which is then interpolated.

Parameters

theta_grid
[ndarray] List if parameter points theta at which the Fisher information matrices I_ij(theta)
is evaluated. Shape (n_gridpoints, n_dimension).

fisherinformation_grid
[ndarray] List if Fisher information matrices I_ij(theta). Shape (n_gridpoints,
n_dimension, n_dimension).

option
[{“smooth”, “linear”}] Defines if the Fisher Information is interpolated smoothly using the
function CloughTocher2DInterpolator() or piecewise linear using LinearNDInterpolator().
Default = ‘smooth’.

inverse
[{“exact”, “interpolate”}] Defines if the inverse Fisher Information is obtained by either
first interpolating the Fisher Information and then inverting it (“exact”) or by first inverting
the grid of Fisher Informations and then interpolating the inverse (“interpolate”). Default
= ‘exact’.

9.2.

madminetr.fisherinformation.geometry module 39



MadMiner Documentation, Release 0.9.5

9.3 madminer.fisherinformation.information module

class madminer. fisherinformation.information.FisherInformation(filename, in-

clude_nuisance_parameters=True)

Bases: DataAnalyzer

Functions to calculate expected Fisher information matrices.

After initializing a FisherInformation instance with the filename of a MadMiner file, different information ma-
trices can be calculated:

FisherInformation.truth_information() calculates the full truth-level Fisher information. This is the in-
formation in an idealized measurement where all parton-level particles with their charges, flavours, and
four-momenta can be accessed with perfect accuracy.

FisherInformation.full_information() calculates the full Fisher information in realistic detector-level obser-
vations, estimated with neural networks. In addition to the MadMiner file, this requires a trained SALLY
or SALLINO estimator as well as an unweighted evaluation sample.

FisherInformation.rate_information() calculates the Fisher information in the total cross section.

FisherInformation.histo_information() calculates the Fisher information in the histogram of one (parton-
level or detector-level) observable.

FisherInformation.histo_information_2d() calculates the Fisher information in a two-dimensional his-
togram of two (parton-level or detector-level) observables.

FisherInformation.histogram_of _information() calculates the full truth-level Fisher information in different
slices of one observable (the “distribution of the Fisher information™).

Finally, don’t forget that in the presence of nuisance parameters the constraint terms also affect the Fisher infor-
mation. This term is given by FisherInformation.calculate_fisher_information_nuisance_constraints().

Parameters

filename
[str] Path to MadMiner file (for instance the output of mad-
miner.delphes.DelphesProcessor.save()).

include_nuisance_parameters
[bool, optional] If True, nuisance parameters are taken into account. Default value: True.

40

Chapter 9. madminer.fisherinformation package



MadMiner Documentation, Release 0.9.5

Methods

calculate_fisher_information_full_detector(Calculates the full Fisher information in realistic

detector-level observations, estimated with neural
networks.

calculate_fisher_information_full_truth(the@plculates the full Fisher information at parton / truth

level.

calculate_fisher_information_hist1d(theta,

)

Calculates the Fisher information in the one-
dimensional histogram of an (parton-level or
detector-level, depending on how the observations in
the MadMiner file were calculated) observable.

calculate_fisher_information_hist2d(theta,

)

Calculates the Fisher information in a two-
dimensional histogram of two (parton-level or
detector-level, depending on how the observations in
the MadMiner file were calculated) observables.

calculate_fisher_information_nuisance_consBuildstt(® Fisher information term representing the

Gaussian constraints on the nuisance parameters

calculate_fisher_information_rate(theta,

)

Calculates the Fisher information in a measurement
of the total cross section (without any kinematic in-
formation).

event_loader([start, end, batch_size, ...])

Yields batches of events in the MadMiner file.

full_information(theta, model_filel, ...])

Calculates the full Fisher information in realistic
detector-level observations, estimated with neural
networks.

histo_information(theta, luminosity, ...[, ...])

Calculates the Fisher information in the one-
dimensional histogram of an (parton-level or
detector-level, depending on how the observations in
the MadMiner file were calculated) observable.

histo_information_2d(theta, luminosity, ...)

Calculates the Fisher information in a two-
dimensional histogram of two (parton-level or
detector-level, depending on how the observations in
the MadMiner file were calculated) observables.

histogram_of_fisher_information(theta, ...)

Calculates the full and rate-only Fisher information
in slices of one observable.

histogram_of_information(theta, observable,

)

Calculates the full and rate-only Fisher information
in slices of one observable.

histogram_of_sigma_dsigma(theta, observable,

)

Fills events into histograms and calculates the cross
section and first derivative for each bin

nuisance_constraint_information()

Builds the Fisher information term representing the
Gaussian constraints on the nuisance parameters

rate_information(theta, luminosity[, cuts, ...])

Calculates the Fisher information in a measurement
of the total cross section (without any kinematic in-
formation).

truth_information(theta[, luminosity, cuts, ...])

Calculates the full Fisher information at parton / truth
level.

weighted_events([theta, nu, start_event, ...])

Returns all events together with the benchmark
weights (if theta is None) or weights for a given theta.

xsec_gradients(thetas[, nus, partition, ...])

Returns the gradient of total cross sections with re-
spect to parameters.

xsecs([thetas, nus, partition, test_split, ...])

Returns the total cross sections for benchmarks or pa-
rameter points.

9.3. madminer.fisherinformation.information module

41



MadMiner Documentation, Release 0.9.5

calculate_fisher_information_full_detector (theta, model_file, unweighted_x_sample_file=None,
luminosity=300000.0, include_xsec_info=True,
mode='score’, calculate_covariance=True,
batch_size=100000, test_split=0.2)

Calculates the full Fisher information in realistic detector-level observations, estimated with neural net-
works. In addition to the MadMiner file, this requires a trained SALLY or SALLINO estimator.

Nuisance parameter are taken into account automatically if the SALLY / SALLINO model was trained with
them.

Parameters

theta
[ndarray] Parameter point theta at which the Fisher information matrix I_ij(theta) is eval-
uated.

model_file
[str] Filename of a trained local score regression model that was trained on samples from
theta (see madminer.ml.Estimator).

unweighted_x_sample_file
[str or None] Filename of an unweighted x sample that is sampled according to theta and
obeys the cuts (see madminer.sampling.SampleAugmenter.extract_samples_train_local()).
If None, the Fisher information is instead calculated on the full, weighted samples (the data
in the MadMiner file). Default value: None.

luminosity
[float, optional] Luminosity in pb*-1. Default value: 300000.

include_xsec_info
[bool, optional] Whether the rate information is included in the returned Fisher information.
Default value: True.

mode
[{*“score”, “information”}, optional] How the ensemble uncertainty on the kinematic Fisher
information is calculated. If mode is “information”, the Fisher information for each estima-
tor is calculated individually and only then are the sample mean and covariance calculated.
If mode is “score”, the sample mean is calculated for the score for each event. Default
value: “score”.

calculate_covariance
[bool, optional] If True, the covariance between the different estimators is calculated. De-
fault value: True.

batch_size
[int, optional] Batch size. Default value: 100000.

test_split
[float or None, optional] If unweighted_x_sample_file is None, this determines the fraction
of weighted events used for evaluation. If None, all events are used (this will probably
include events used during training!). Default value: 0.2.

Returns

fisher_information
[ndarray or list of ndarray] Estimated expected full detector-level Fisher information
matrix with shape (n_parameters, n_parameters). If more then one value ensem-
ble_vote_expectation_weight is given, this is a list with results for all entries in ensem-
ble_vote_expectation_weight.

42 Chapter 9. madminer.fisherinformation package



MadMiner Documentation, Release 0.9.5

fisher_information_uncertainty
[ndarray or list of ndarray or None] Covariance matrix of the Fisher information matrix
with shape (n_parameters, n_parameters, n_parameters, n_parameters). If more then one
value ensemble_vote_expectation_weight is given, this is a list with results for all entries
in ensemble_vote_expectation_weight.

calculate_fisher_information_full_truth(theta, luminosity=300000.0, cuts=None,
efficiency_functions=None,
include_nuisance_parameters=True)

Calculates the full Fisher information at parton / truth level. This is the information in an idealized mea-
surement where all parton-level particles with their charges, flavours, and four-momenta can be accessed
with perfect accuracy, i.e. the latent variables z_parton can be measured directly.

Parameters

theta
[ndarray] Parameter point theta at which the Fisher information matrix I_ij(theta) is eval-
uated.

luminosity
[float] Luminosity in pb”-1.

cuts
[None or list of str, optional] Cuts. Each entry is a parseable Python expression that returns
a bool (True if the event should pass a cut, False otherwise). Default value: None.

efficiency_functions
[list of str or None] Efficiencies. Each entry is a parseable Python expression that returns
a float for the efficiency of one component. Default value: None.

include_nuisance_parameters
[bool, optional] If True, nuisance parameters are taken into account. Default value: True.

Returns

fisher_information
[ndarray] Expected full truth-level Fisher information matrix with shape (n_parameters,
n_parameters).

fisher_information_uncertainty
[ndarray] Covariance matrix of the Fisher information matrix with shape (n_parameters,
n_parameters, n_parameters, n_parameters), calculated with plain Gaussian error propa-
gation.

calculate_fisher_information_hist1d(theta, luminosity, observable, bins, histrange=None,
cuts=None, efficiency_functions=None,
n_events_dynamic_binning=None)

Calculates the Fisher information in the one-dimensional histogram of an (parton-level or detector-level,
depending on how the observations in the MadMiner file were calculated) observable.

Parameters

theta
[ndarray] Parameter point theta at which the Fisher information matrix I_ij(theta) is eval-
uated.

luminosity
[float] Luminosity in pb”-1.

9.3.

madminer.fisherinformation.information module 43



MadMiner Documentation, Release 0.9.5

observable
[str] Expression for the observable to be histogrammed. The str will be parsed by Python’s
eval() function and can use the names of the observables in the MadMiner files.

bins
[int or ndarray] If int: number of bins in the histogram, excluding overflow bins. Otherwise,
defines the bin boundaries (excluding overflow bins).

histrange
[tuple of float or None, optional] Minimum and maximum value of the histogram in the
form (min, max). Overflow bins are always added. If None and bins is an int, variable-width
bins with equal cross section are constructed automatically. Default value: None.

cuts
[None or list of str, optional] Cuts. Each entry is a parseable Python expression that returns
a bool (True if the event should pass a cut, False otherwise). Default value: None.

efficiency_functions
[list of str or None] Efficiencies. Each entry is a parseable Python expression that returns
a float for the efficiency of one component. Default value: None.

n_events_dynamic_binning
[int or None, optional] Number of events used to calculate the dynamic binning (if histrange
is None). If None, all events are used. Note that these events are not shuffled, so if the events
in the MadMiner file are sorted, using a value different from None can cause issues. Default
value: None.

Returns

fisher_information
[ndarray] Expected Fisher information in the histogram with shape (n_parameters,
n_parameters).

fisher_information_uncertainty
[ndarray] Covariance matrix of the Fisher information matrix with shape (n_parameters,
n_parameters, n_parameters, n_parameters), calculated with plain Gaussian error propa-
gation.

calculate_fisher_information_hist2d(theta, luminosity, observablel, binsl, observable2, bins2,
histrange I=None, histrange2=None, cuts=None,
efficiency_functions=None, n_events_dynamic_binning=None)

Calculates the Fisher information in a two-dimensional histogram of two (parton-level or detector-level,
depending on how the observations in the MadMiner file were calculated) observables.

Parameters

theta
[ndarray] Parameter point theta at which the Fisher information matrix I_ij(theta) is eval-
uated.

luminosity
[float] Luminosity in pb”-1.

observablel
[str] Expression for the first observable to be histogrammed. The str will be parsed by
Python’s eval() function and can use the names of the observables in the MadMiner files.

bins1
[int or ndarray] If int: number of bins along the first axis in the histogram in the histogram,
excluding overflow bins. Otherwise, defines the bin boundaries along the first axis in the
histogram (excluding overflow bins).

44 Chapter 9. madminer.fisherinformation package



MadMiner Documentation, Release 0.9.5

observable2
[str] Expression for the first observable to be histogrammed. The str will be parsed by
Python’s eval() function and can use the names of the observables in the MadMiner files.

bins2
[int or ndarray] If int: number of bins along the second axis in the histogram in the his-
togram, excluding overflow bins. Otherwise, defines the bin boundaries along the second
axis in the histogram (excluding overflow bins).

histrangel
[tuple of float or None, optional] Minimum and maximum value of the first axis of the
histogram in the form (min, max). Overflow bins are always added. If None, variable-
width bins with equal cross section are constructed automatically. Default value: None.

histrange2
[tuple of float or None, optional] Minimum and maximum value of the first axis of the
histogram in the form (min, max). Overflow bins are always added. If None, variable-
width bins with equal cross section are constructed automatically. Default value: None.

cuts
[None or list of str, optional] Cuts. Each entry is a parseable Python expression that returns
a bool (True if the event should pass a cut, False otherwise). Default value: None.

efficiency_functions
[list of str or None] Efficiencies. Each entry is a parseable Python expression that returns
a float for the efficiency of one component. Default value: None.

n_events_dynamic_binning
[int or None, optional] Number of events used to calculate the dynamic binning (if histrange
is None). If None, all events are used. Note that these events are not shuffled, so if the events
in the MadMiner file are sorted, using a value different from None can cause issues. Default
value: None.

Returns

fisher_information
[ndarray] Expected Fisher information in the histogram with shape (n_parameters,
n_parameters).

fisher_information_uncertainty
[ndarray] Covariance matrix of the Fisher information matrix with shape (n_parameters,
n_parameters, n_parameters, n_parameters), calculated with plain Gaussian error propa-
gation.
calculate_fisher_information_nuisance_constraints()
Builds the Fisher information term representing the Gaussian constraints on the nuisance parameters
calculate_fisher_information_rate(theta, luminosity, cuts=None, efficiency_functions=None,
include_nuisance_parameters=True)
Calculates the Fisher information in a measurement of the total cross section (without any kinematic infor-
mation).

Parameters

theta
[ndarray] Parameter point theta at which the Fisher information matrix I_ij(theta) is eval-
uated.

luminosity
[float] Luminosity in pb”-1.

9.3.

madminer.fisherinformation.information module 45



MadMiner Documentation, Release 0.9.5

cuts
[None or list of str, optional] Cuts. Each entry is a parseable Python expression that returns
a bool (True if the event should pass a cut, False otherwise). Default value: None.

efficiency_functions
[list of str or None] Efficiencies. Each entry is a parseable Python expression that returns
a float for the efficiency of one component. Default value: None.

include_nuisance_parameters
[bool, optional] If True, nuisance parameters are taken into account. Default value: True.

Returns

fisher_information
[ndarray] Expected Fisher information in the total cross section with shape (n_parameters,
n_parameters).

fisher_information_uncertainty
[ndarray] Covariance matrix of the Fisher information matrix with shape (n_parameters,
n_parameters, n_parameters, n_parameters), calculated with plain Gaussian error propa-
gation.

full_information(theta, model_file, unweighted_x_sample_file=None, luminosity=300000.0,
include_xsec_info=True, mode='score', calculate_covariance=True,
batch_size=100000, test_split=0.2)

Calculates the full Fisher information in realistic detector-level observations, estimated with neural net-
works. In addition to the MadMiner file, this requires a trained SALLY or SALLINO estimator.

Nuisance parameter are taken into account automatically if the SALLY / SALLINO model was trained with

them.
Parameters
theta
[ndarray] Parameter point theta at which the Fisher information matrix I_ij(theta) is eval-
uated.
model_file

[str] Filename of a trained local score regression model that was trained on samples from
theta (see madminer.ml. Estimator).

unweighted_x_sample_file
[str or None] Filename of an unweighted x sample that is sampled according to theta and
obeys the cuts (see madminer.sampling.SampleAugmenter.extract_samples_train_local()).
If None, the Fisher information is instead calculated on the full, weighted samples (the data
in the MadMiner file). Default value: None.

luminosity
[float, optional] Luminosity in pb”-1. Default value: 300000.

include_xsec_info
[bool, optional] Whether the rate information is included in the returned Fisher information.
Default value: True.

mode
[{“score”, “information”}, optional] How the ensemble uncertainty on the kinematic Fisher
information is calculated. If mode is “information”, the Fisher information for each estima-
tor is calculated individually and only then are the sample mean and covariance calculated.
If mode is “score”, the sample mean is calculated for the score for each event. Default
value: “score”.

46 Chapter 9. madminer.fisherinformation package



MadMiner Documentation, Release 0.9.5

calculate_covariance
[bool, optional] If True, the covariance between the different estimators is calculated. De-
fault value: True.

batch_size
[int, optional] Batch size. Default value: 100000.

test_split
[float or None, optional] If unweighted_x_sample_file is None, this determines the fraction
of weighted events used for evaluation. If None, all events are used (this will probably
include events used during training!). Default value: 0.2.

Returns

fisher_information
[ndarray or list of ndarray] Estimated expected full detector-level Fisher information
matrix with shape (n_parameters, n_parameters). If more then one value ensem-
ble_vote_expectation_weight is given, this is a list with results for all entries in ensem-
ble_vote_expectation_weight.

fisher_information_uncertainty
[ndarray or list of ndarray or None] Covariance matrix of the Fisher information matrix
with shape (n_parameters, n_parameters, n_parameters, n_parameters). If more then one
value ensemble_vote_expectation_weight is given, this is a list with results for all entries
in ensemble_vote_expectation_weight.

histo_information (theta, luminosity, observable, bins, histrange=None, cuts=None,
efficiency_functions=None, n_events_dynamic_binning=None)

Calculates the Fisher information in the one-dimensional histogram of an (parton-level or detector-level,
depending on how the observations in the MadMiner file were calculated) observable.

Parameters

theta
[ndarray] Parameter point theta at which the Fisher information matrix /I_ij(theta) is eval-
uated.

luminosity
[float] Luminosity in pb”-1.

observable
[str] Expression for the observable to be histogrammed. The str will be parsed by Python’s
eval() function and can use the names of the observables in the MadMiner files.

bins
[int or ndarray] If int: number of bins in the histogram, excluding overflow bins. Otherwise,
defines the bin boundaries (excluding overflow bins).

histrange
[tuple of float or None, optional] Minimum and maximum value of the histogram in the
form (min, max). Overflow bins are always added. If None and bins is an int, variable-width
bins with equal cross section are constructed automatically. Default value: None.

cuts
[None or list of str, optional] Cuts. Each entry is a parseable Python expression that returns
a bool (True if the event should pass a cut, False otherwise). Default value: None.

efficiency_functions
[list of str or None] Efficiencies. Each entry is a parseable Python expression that returns
a float for the efficiency of one component. Default value: None.

. madminer.fisherinformation.information module 47



MadMiner Documentation, Release 0.9.5

n_events_dynamic_binning
[int or None, optional] Number of events used to calculate the dynamic binning (if histrange
is None). If None, all events are used. Note that these events are not shuffled, so if the events
in the MadMiner file are sorted, using a value different from None can cause issues. Default
value: None.

Returns

fisher_information
[ndarray] Expected Fisher information in the histogram with shape (n_parameters,
n_parameters).

fisher_information_uncertainty
[ndarray] Covariance matrix of the Fisher information matrix with shape (n_parameters,
n_parameters, n_parameters, n_parameters), calculated with plain Gaussian error propa-
gation.

histo_information_2d(theta, luminosity, observablel, binsl, observable2, bins2, histrangel=None,
histrange2=None, cuts=None, efficiency_functions=None,
n_events_dynamic_binning=None)

Calculates the Fisher information in a two-dimensional histogram of two (parton-level or detector-level,
depending on how the observations in the MadMiner file were calculated) observables.

Parameters

theta
[ndarray] Parameter point theta at which the Fisher information matrix I_ij(theta) is eval-
uated.

luminosity
[float] Luminosity in pb”-1.

observablel
[str] Expression for the first observable to be histogrammed. The str will be parsed by
Python’s eval() function and can use the names of the observables in the MadMiner files.

binsl
[int or ndarray] If int: number of bins along the first axis in the histogram in the histogram,
excluding overflow bins. Otherwise, defines the bin boundaries along the first axis in the
histogram (excluding overflow bins).

observable2
[str] Expression for the first observable to be histogrammed. The str will be parsed by
Python’s eval() function and can use the names of the observables in the MadMiner files.

bins2
[int or ndarray] If int: number of bins along the second axis in the histogram in the his-
togram, excluding overflow bins. Otherwise, defines the bin boundaries along the second
axis in the histogram (excluding overflow bins).

histrangel
[tuple of float or None, optional] Minimum and maximum value of the first axis of the
histogram in the form (min, max). Overflow bins are always added. If None, variable-
width bins with equal cross section are constructed automatically. Default value: None.

histrange2
[tuple of float or None, optional] Minimum and maximum value of the first axis of the
histogram in the form (min, max). Overflow bins are always added. If None, variable-
width bins with equal cross section are constructed automatically. Default value: None.

48 Chapter 9. madminer.fisherinformation package



MadMiner Documentation, Release 0.9.5

cuts
[None or list of str, optional] Cuts. Each entry is a parseable Python expression that returns
a bool (True if the event should pass a cut, False otherwise). Default value: None.

efficiency_functions
[list of str or None] Efficiencies. Each entry is a parseable Python expression that returns
a float for the efficiency of one component. Default value: None.

n_events_dynamic_binning
[int or None, optional] Number of events used to calculate the dynamic binning (if histrange
is None). If None, all events are used. Note that these events are not shuffled, so if the events
in the MadMiner file are sorted, using a value different from None can cause issues. Default
value: None.

Returns

fisher_information
[ndarray] Expected Fisher information in the histogram with shape (n_parameters,
n_parameters).

fisher_information_uncertainty
[ndarray] Covariance matrix of the Fisher information matrix with shape (n_parameters,
n_parameters, n_parameters, n_parameters), calculated with plain Gaussian error propa-
gation.

histogram_of_fisher_information(theta, observable, nbins, histrange, model_file=None,
luminosity=300000.0, cuts=None, efficiency_functions=None,
batch_size=100000, test_split=0.2)

Calculates the full and rate-only Fisher information in slices of one observable. For the full information, it
will return the truth-level information if model_file is None, and otherwise the detector-level information
based on the SALLY-type score estimator saved in model_file.

Parameters

theta
[ndarray] Parameter point theta at which the Fisher information matrix I_ij(theta) is eval-
uated.

observable
[str] Expression for the observable to be sliced. The str will be parsed by Python’s eval()
function and can use the names of the observables in the MadMiner files.

nbins
[int] Number of bins in the slicing, excluding overflow bins.

histrange
[tuple of float] Minimum and maximum value of the slicing in the form (min, max). Over-
flow bins are always added.

model_file
[str or None, optional] If None, the truth-level Fisher information is calculated. If str,
filename of a trained local score regression model that was trained on samples from theta
(see madminer.ml.Estimator). Default value: None.

luminosity
[float, optional] Luminosity in pb”-1. Default value: 300000.

cuts
[None or list of str, optional] Cuts. Each entry is a parseable Python expression that returns
a bool (True if the event should pass a cut, False otherwise). Default value: None.

9.3.

madminer.fisherinformation.information module 49



MadMiner Documentation, Release 0.9.5

efficiency_functions
[list of str or None] Efficiencies. Each entry is a parseable Python expression that returns
a float for the efficiency of one component. Default value: None.

batch_size
[int, optional] If model_file is not None: Batch size. Default value: 100000.

test_split
[float or None, optional] If model_file is not None: If unweighted_x_sample_file is None,
this determines the fraction of weighted events used for evaluation. If None, all events are
used (this will probably include events used during training!). Default value: 0.2.

Returns

bin_boundaries
[ndarray] Observable slice boundaries.

sigma_bins
[ndarray] Cross section in pb in each of the slices.

fisher_infos_rate
[ndarray] Expected rate-only Fisher information for each slice. Has shape (n_slices,
n_parameters, n_parameters).

fisher_infos_full
[ndarray] Expected full Fisher information for each slice. = Has shape (n_slices,
n_parameters, n_parameters).

histogram_of_information(theta, observable, nbins, histrange, model_file=None, luminosity=300000.0,
cuts=None, efficiency_functions=None, batch_size=100000, test_split=0.2)

Calculates the full and rate-only Fisher information in slices of one observable. For the full information, it
will return the truth-level information if model_file is None, and otherwise the detector-level information
based on the SALLY-type score estimator saved in model_file.

Parameters

theta
[ndarray] Parameter point theta at which the Fisher information matrix I_ij(theta) is eval-
uated.

observable
[str] Expression for the observable to be sliced. The str will be parsed by Python’s eval()
function and can use the names of the observables in the MadMiner files.

nbins
[int] Number of bins in the slicing, excluding overflow bins.

histrange
[tuple of float] Minimum and maximum value of the slicing in the form (min, max). Over-
flow bins are always added.

model_file
[str or None, optional] If None, the truth-level Fisher information is calculated. If str,
filename of a trained local score regression model that was trained on samples from theta
(see madminer.ml.Estimator). Default value: None.

luminosity
[float, optional] Luminosity in pb”-1. Default value: 300000.

cuts
[None or list of str, optional] Cuts. Each entry is a parseable Python expression that returns
a bool (True if the event should pass a cut, False otherwise). Default value: None.

50 Chapter 9. madminer.fisherinformation package



MadMiner Documentation, Release 0.9.5

efficiency_functions
[list of str or None] Efficiencies. Each entry is a parseable Python expression that returns
a float for the efficiency of one component. Default value: None.

batch_size
[int, optional] If model_file is not None: Batch size. Default value: 100000.

test_split
[float or None, optional] If model_file is not None: If unweighted_x_sample_file is None,
this determines the fraction of weighted events used for evaluation. If None, all events are
used (this will probably include events used during training!). Default value: 0.2.

Returns

bin_boundaries
[ndarray] Observable slice boundaries.

sigma_bins
[ndarray] Cross section in pb in each of the slices.

fisher_infos_rate
[ndarray] Expected rate-only Fisher information for each slice. Has shape (n_slices,
n_parameters, n_parameters).

fisher_infos_full
[ndarray] Expected full Fisher information for each slice. = Has shape (n_slices,
n_parameters, n_parameters).

histogram_of_sigma_dsigma (theta, observable, nbins, histrange, cuts=None, efficiency_functions=None)
Fills events into histograms and calculates the cross section and first derivative for each bin

Parameters

theta
[ndarray] Parameter point theta at which the Fisher information matrix /I_ij(theta) is eval-
uated.

observable
[str] Expression for the observable to be sliced. The str will be parsed by Python’s eval()
function and can use the names of the observables in the MadMiner files.

nbins
[int] Number of bins in the slicing, excluding overflow bins.

histrange
[tuple of float] Minimum and maximum value of the slicing in the form (min, max). Over-
flow bins are always added.

cuts
[None or list of str, optional] Cuts. Each entry is a parseable Python expression that returns
a bool (True if the event should pass a cut, False otherwise). Default value: None.

efficiency_functions
[list of str or None] Efficiencies. Each entry is a parseable Python expression that returns
a float for the efficiency of one component. Default value: None.

Returns

bin_boundaries
[ndarray] Observable slice boundaries.

sigma_bins
[ndarray] Cross section in pb in each of the slices.

9.3.

madminer.fisherinformation.information module 51



MadMiner Documentation, Release 0.9.5

dsigma_bins
[ndarray] Cross section in pb in each of the slices.

nuisance_constraint_information()

Builds the Fisher information term representing the Gaussian constraints on the nuisance parameters

rate_information (theta, luminosity, cuts=None, efficiency_functions=None,
include_nuisance_parameters=True)

Calculates the Fisher information in a measurement of the total cross section (without any kinematic infor-
mation).

Parameters

theta
[ndarray] Parameter point theta at which the Fisher information matrix I_ij(theta) is eval-
uated.

luminosity
[float] Luminosity in pb”-1.

cuts
[None or list of str, optional] Cuts. Each entry is a parseable Python expression that returns
a bool (True if the event should pass a cut, False otherwise). Default value: None.

efficiency_functions
[list of str or None] Efficiencies. Each entry is a parseable Python expression that returns
a float for the efficiency of one component. Default value: None.

include_nuisance_parameters
[bool, optional] If True, nuisance parameters are taken into account. Default value: True.

Returns

fisher_information
[ndarray] Expected Fisher information in the total cross section with shape (n_parameters,
n_parameters).

fisher_information_uncertainty
[ndarray] Covariance matrix of the Fisher information matrix with shape (n_parameters,
n_parameters, n_parameters, n_parameters), calculated with plain Gaussian error propa-
gation.

truth_information (theta, luminosity=300000.0, cuts=None, efficiency_functions=None,
include_nuisance_parameters=True)

Calculates the full Fisher information at parton / truth level. This is the information in an idealized mea-
surement where all parton-level particles with their charges, flavours, and four-momenta can be accessed
with perfect accuracy, i.e. the latent variables z_parton can be measured directly.

Parameters

theta
[ndarray] Parameter point theta at which the Fisher information matrix I_ij(theta) is eval-
uated.

luminosity
[float] Luminosity in pb”-1.

cuts
[None or list of str, optional] Cuts. Each entry is a parseable Python expression that returns
a bool (True if the event should pass a cut, False otherwise). Default value: None.

52 Chapter 9. madminer.fisherinformation package



MadMiner Documentation, Release 0.9.5

efficiency_functions
[list of str or None] Efficiencies. Each entry is a parseable Python expression that returns
a float for the efficiency of one component. Default value: None.

include_nuisance_parameters
[bool, optional] If True, nuisance parameters are taken into account. Default value: True.

Returns

fisher_information
[ndarray] Expected full truth-level Fisher information matrix with shape (n_parameters,
n_parameters).

fisher_information_uncertainty
[ndarray] Covariance matrix of the Fisher information matrix with shape (n_parameters,
n_parameters, n_parameters, n_parameters), calculated with plain Gaussian error propa-
gation.

9.4 madminer.fisherinformation.manipulate module

madminer. fisherinformation.manipulate.profile_information(fisher_information,
remaining_components,
covariance=None,
error_propagation_n_ensemble=1000,
error_propagation_factor=0.001)

Calculates the profiled Fisher information matrix as defined in Appendix A.4 of arXiv:1612.05261.
Parameters

fisher_information
[ndarray] Original n x n Fisher information.

remaining_components
[list of int] List with m entries, each an int with 0 <= remaining_components[i] < n. Denotes
which parameters are kept, and their new order. All other parameters or profiled out.

covariance
[ndarray or None, optional] The covariance matrix of the original Fisher information with
shape (n, n, n, n). If None, the error on the profiled information is not calculated. Default
value: None.

error_propagation_n_ensemble
[int, optional] If covariance is not None, this sets the number of Fisher information matrices
drawn from a normal distribution for the Monte-Carlo error propagation. Default value:
1000.

error_propagation_factor
[float, optional] If covariance is not None, this factor multiplies the covariance of the distri-
bution of Fisher information matrices. Smaller factors can avoid problems with ill-behaved
Fisher information matrices. Default value: 1.e-3.

Returns

profiled_fisher_information
[ndarray] Profiled m x m Fisher information, where the i-th row or column corresponds to
the remaining_components[i]-th row or column of fisher_information.

9.4. madminer.fisherinformation.manipulate module 53



MadMiner Documentation, Release 0.9.5

profiled_fisher_information_covariance
[ndarray] Covariance matrix of the profiled Fisher information matrix with shape (m, m, m,
m).

madminer. fisherinformation.manipulate.project_information(fisher_information,
remaining_components,
covariance=None)

Calculates projections of a Fisher information matrix, that is, “deletes” the rows and columns corresponding to
some parameters not of interest.

Parameters

fisher_information
[ndarray] Original n x n Fisher information.

remaining_components
[list of int] List with m entries, each an int with 0 <= remaining_components[i] < n. Denotes
which parameters are kept, and their new order. All other parameters or projected out.

covariance
[ndarray or None, optional] The covariance matrix of the original Fisher information with
shape (n, n, n, n). If None, the error on the profiled information is not calculated. Default
value: None.

Returns

projected_fisher_information
[ndarray] Projected m x m Fisher information, where the i-th row or column corresponds to
the remaining_components[i]-th row or column of fisher_information.

profiled_fisher_information_covariance
[ndarray] Covariance matrix of the projected Fisher information matrix with shape (m, m,
m, m). Only returned if covariance is not None.

9.5 Module contents

54 Chapter 9. madminer.fisherinformation package



CHAPTER
TEN

MADMINER.LHE PACKAGE

10.1 Submodules

10.2 madminer.lhe.lhe _reader module

class madminer.lhe.lhe_reader.LHEReader (filename)

Bases: object

Detector simulation with smearing functions and simple calculation of observables.

After setting up the parameter space and benchmarks and running MadGraph and Pythia, all of which is organized
in the madminer.core.MadMiner class, the next steps are the simulation of detector effects and the calculation
of observables. Different tools can be used for these tasks, please feel free to implement the detector simulation
and analysis routine of your choice.

This class provides a simple implementation in which detector effects are modeled with smearing functions. Its
workflow consists of the following steps:

Initializing the class with the filename of a MadMiner HDF5 file (the output of mad-
miner.core.MadMiner.save())

Adding one or multiple event samples produced by MadGraph and Pythia in LHEProcessor.add_sample().
Running Delphes on the samples that require it through LHEProcessor.run_delphes().
Optionally, smearing functions for all visible particles can be defined with LHEProcessor.set_smearing().

Defining observables through LHEProcessor.add_observable() or LHEProces-
sor.add_observable_from_function(). A simple set of default observables is provided in LHEPro-
cessor.add_default_observables()

Optionally, cuts can be set with LHEProcessor.add_cut()
Optionally, efficiencies can be set with LHEProcessor.add_efficiency()
Calculating the observables from the Delphes ROOT files with LHEProcessor.analyse_delphes_samples()

Saving the results with LHEProcessor.save()

Please see the tutorial for a detailed walk-through.

Parameters

filename
[str or None, optional] Path to MadMiner file (the output of mad-
miner.core.MadMiner.save()). Default value: None.

55



MadMiner Documentation, Release 0.9.5

Methods

add_cut(definition[, required])

Adds a cut as a string that can be parsed by Python's
eval() function and returns a bool.

add_default_observables([n_leptons_max, ...])

Adds a set of simple standard observables: the four-
momenta (parameterized as E, pT, eta, phi) of the
hardest visible particles, and the missing transverse
energy.

add_efficiency(definition[, default])

Adds an efficiency as a string that can be parsed by
Python's eval() function and returns a bool.

add_observable(name, definition[, required, ...])

Adds an observable as a string that can be parsed by
Python's eval() function.

add_observable_from_function(name, fn[, ...])

Adds an observable defined through a function.

add_sample(lhe_filename, sam-
pled_from_benchmark)

Adds an LHE sample of simulated events.

analyse_samples([reference_benchmark, ...])

Main function that parses the LHE samples, applies
detector effects, checks cuts, evaluate efficiencies,
and extracts the observables and weights.

reset_cuts()

Resets all cuts.

reset_efficiencies()

Resets all efficiencies.

reset_observables()

Resets all observables.

save(filename_out[, shuffie])

Saves the observable definitions, observable values,
and event weights in a MadMiner file.

set_met_noise([abs_, rel])

Sets up additional noise in the MET variable from
shower and detector effects.

set_smearing([pdgids, ...])

Sets up the smearing of measured momenta from
shower and detector effects.

add_cut (definition, required=False)

Adds a cut as a string that can be parsed by Python’s eval() function and returns a bool.

Parameters

definition

[str] An expression that can be parsed by Python’s eval() function and returns a bool: True
for the event to pass this cut, False for it to be rejected. In the definition, all visible particles
can be used: e, mu, j, a, and [ provide lists of electrons, muons, jets, photons, and leptons
(electrons and muons combined), in each case sorted by descending transverse momen-
tum. met provides a missing ET object. visible and all provide access to the sum of all
visible particles and the sum of all visible particles plus MET, respectively. In addition,
MadMinerParticle have properties charge and pdg_id, which return the charge in units of
elementary charges (i.e. an electron has e/0].charge = -1.), and the PDG particle ID. For in-
stance, “len(e) >= 2" requires at least two electrons passing the cuts, while “mu[0].charge
> (.” specifies that the hardest muon is positively charged.

required

[bool, optional] Whether the cut is passed if the observable cannot be parsed. Default value:

False.
Returns

None

add_default_observables (n_leptons_max=2, n_photons_max=2, n_jets_max=2, include_met=True,
include_visible_sum=True, include_numbers=True, include_charge=True)

56

Chapter 10. madminer.lhe package



MadMiner Documentation, Release 0.9.5

Adds a set of simple standard observables: the four-momenta (parameterized as E, pT, eta, phi) of the
hardest visible particles, and the missing transverse energy.

Parameters

n_leptons_max
[int, optional] Number of hardest leptons for which the four-momenta are saved. Default
value: 2.

n_photons_max
[int, optional] Number of hardest photons for which the four-momenta are saved. Default
value: 2.

n_jets_max
[int, optional] Number of hardest jets for which the four-momenta are saved. Default value:
2.

include_met
[bool, optional] Whether the missing energy observables are stored. Default value: True.

include_visible_sum
[bool, optional] Whether observables characterizing the sum of all particles are stored.
Default value: True.

include_numbers
[bool, optional] Whether the number of leptons, photons, and jets is saved as observable.
Default value: True.

include_charge
[bool, optional] Whether the lepton charge is saved as observable. Default value: True.

Returns
None

add_efficiency (definition, default=1.0)
Adds an efficiency as a string that can be parsed by Python’s eval() function and returns a bool.

Parameters

definition

[str] An expression that can be parsed by Python’s eval() function and returns a floating
number which reweights the event weights. In the definition, all visible particles can be
used: e, mu, j, a, and [ provide lists of electrons, muons, jets, photons, and leptons (elec-
trons and muons combined), in each case sorted by descending transverse momentum. met
provides a missing ET object. visible and all provide access to the sum of all visible par-
ticles and the sum of all visible particles plus MET, respectively. In addition, MadMiner-
Particle have properties charge and pdg_id, which return the charge in units of elementary
charges (i.e. an electron has e[0].charge = -1.), and the PDG particle ID.

default
[float, optional] Value if te efficiency function cannot be parsed. Default value: 1.

Returns
None

add_observable (name, definition, required=False, default=None)
Adds an observable as a string that can be parsed by Python’s eval() function.

Parameters

10.2. madminer.lhe.lhe_reader module 57



MadMiner Documentation, Release 0.9.5

name
[str] Name of the observable. Since this name will be used in eval() calls for cuts, this
should not contain spaces or special characters.

definition

[str] An expression that can be parsed by Python’s eval() function. As objects, all particles
can be used: e, mu, tau, j, a, I, v provide lists of electrons, muons, taus, jets, photons,
leptons ( electrons and muons combined), and neutrinos, in each case sorted by descending
transverse momentum. met provides a missing ET object. p gives all particles in the same
order as in the LHE file (i.e. in the same order as defined in the MadGraph process card). In
addition, MadMinerParticle have properties charge and pdg_id, which return the charge in
units of elementary charges (i.e. an electron has e[0].charge = -1.), and the PDG particle
ID. For instance, “abs(j[0].phi - j[1].phi)” defines the azimuthal angle between the two
hardest jets.

required
[bool, optional] Whether the observable is required. If True, an event will only be retained
if this observable is successfully parsed. For instance, any observable involving “j[1]”
will only be parsed if there are at least two jets passing the acceptance cuts. Default value:
False.

default
[float or None, optional] If required=False, this is the placeholder value for observables
that cannot be parsed. None is replaced with np.nan. Default value: None.

Returns
None

add_observable_from_function(name, fn, required=False, default=None)
Adds an observable defined through a function.

Parameters

name
[str] Name of the observable. Since this name will be used in eval() calls for cuts, this
should not contain spaces or special characters.

fn
[function] A function with signature observable(particles, leptons, photons, jets, met)
where all arguments are lists of MadMinerParticle instances and a float is returned. par-
ticles are the truth-level particles, ordered in the same way as in the LHE file, and no
smearing is applied. leptons, photons, jets, and met have smearing applied. The function
should raise a RuntimeError to signal that it is not defined.

required
[bool, optional] Whether the observable is required. If True, an event will only be retained
if this observable is successfully parsed. For instance, any observable involving “j[1]”
will only be parsed if there are at least two jets passing the acceptance cuts. Default value:
False.

default
[float or None, optional] If required=False, this is the placeholder value for observables
that cannot be parsed. None is replaced with np.nan. Default value: None.

Returns

None

58 Chapter 10. madminer.lhe package



MadMiner Documentation, Release 0.9.5

add_sample (lhe_filename, sampled_from_benchmark, is_background=False, k_factor=1.0,
systematics=None)

Adds an LHE sample of simulated events.
Parameters

lhe_filename
[str] Path to the LHE event file (with extension ‘.lhe’ or ‘.lhe.gz’).

sampled_from_benchmark
[str] Name of the benchmark that was used for sampling in this event file (the keyword
sample_benchmark of madminer.core.MadMiner.run()).

is_background

[bool, optional] Whether the sample is a background sample (i.e. without benchmark
reweighting).

k_factor
[float, optional] Multiplies the cross sections found in the sample. Default value: 1.

systematics

[None or list of str, optional] List of systematics associated with this sample. Default value:
None.

Returns
None

analyse_samples (reference_benchmark=None, parse_events_as_xmi=True)

Main function that parses the LHE samples, applies detector effects, checks cuts, evaluate efficiencies, and
extracts the observables and weights.

Parameters

reference_benchmark
[str or None, optional] The weights at the nuisance benchmarks will be rescaled to some
reference theta benchmark: dsigma(x|theta_sampling(x),nu) -> dsigma(x|theta_ref,nu) =
dsigma(x|theta_sampling(x),nu) * dsigma(x|theta_ref,0) / dsigma(x|theta_sampling(x),0).
This sets the name of the reference benchmark. If None, the first one will be used. Default
value: None.

parse_events_as_xml
[bool, optional] Decides whether the LHE events are parsed with an XML parser (more
robust, but slower) or a text parser (less robust, faster). Default value: True.

Returns
None

reset_cuts()

Resets all cuts.
reset_efficiencies()

Resets all efficiencies.
reset_observables()

Resets all observables.
save (filename_out, shuffle=True)

Saves the observable definitions, observable values, and event weights in a MadMiner file. The parameter,
benchmark, and morphing setup is copied from the file provided during initialization. Nuisance benchmarks
found in the LHE file are added.

10.2. madminer.lhe.lhe_reader module 59



MadMiner Documentation, Release 0.9.5

Parameters

filename_out
[str] Path to where the results should be saved.

shuffle
[bool, optional] If True, events are shuffied before being saved. That’s important when
there are multiple distinct samples (e.g. signal and background). Default value: True.

Returns

None

set_met_noise(abs_=0.0, rel=0.0)

Sets up additional noise in the MET variable from shower and detector effects.

By default, the MET is calculated based on all reconstructed visible particles, including the effect of the
smearing of these particles (set with set_smearing()). But often the MET is in fact more affected by addi-
tional soft activity than by mismeasurements of the hard particles. This function adds a Gaussian random
to each of the x and y components of the MET vector. The Gaussian has mean 0 and standard deviation
abs + rel * HT, where HT is the scalar sum of the pT of all particles in the process. Everything is given in
GeV.

Parameters

abs

[float, optional] Absolute contribution to MET noise. Default value: 0.

rel
[float, optional] Relative (to HT) contribution to MET noise. Default value: 0.

Returns

None

set_smearing (pdgids=None, energy_resolution_abs=0.0, energy_resolution_rel=0.0,

pt_resolution_abs=0.0, pt_resolution_rel=0.0, eta_resolution_abs=0.0,
eta_resolution_rel=0.0, phi_resolution_abs=0.0, phi_resolution_rel=0.0)

Sets up the smearing of measured momenta from shower and detector effects.

This function can be called with pdgids=None, in which case the settings are used for all visible particles, or
with pdgids set to a list of PDG ids representing particles, for instance [11, -11] for electrons (and positrons).

For all particles of this type, and for the energy, pT, phi, and eta, the measurement error is drawn from a
Gaussian with mean 0 and standard deviation given by (X_resolution_abs + X * X_resolution_rel). Here X
is the quantity (E, pT, phi, eta) of interest and X_resolution_abs and X_resolution_rel are the corresponding
keywords. In the case of energy and pT, values smaller than 0 will lead to a re-drawing of the measurement
error.

Instead of such numerical values, either the energy or pT resolution (but not both!) may be set to None.
In this case, this quantity is calculated from the mass of the particle and all other smeared particles. For
instance, when pt_resolution_abs is None or pt_resolution_rel is None, for the given particles the energy,
phi, and eta are smeared (according to their respective resolutions). Then the transverse momentum is
calculated from the on-shell condition p"2 = m”2, or pT = sqrt(E"2 - m"2) / cosh(eta). When this does
not have a solution, the pT is set to zero. On the other hand, when energy_resolution_abs is None or
energy_resolution_abs is None, for the given particles the pT, phi, and eta are smeared, and then the energy
is calculated as E = sqrt(pT * cosh(eta))*2 + m"2).

Parameters

pdgids
[None or list of int, optional] Defines the particles these smearing functions affect. If None,

60

Chapter 10. madminer.lhe package



MadMiner Documentation, Release 0.9.5

all particles are affected. Note that if set_smearing() is called multiple times for a given
particle, the earlier calls will be forgotten and only the last smearing function will take
effect. Default value: None.

energy_resolution_abs
[float or None, optional] Absolute measurement uncertainty for the energy in GeV. None
means that the energy is not smeared directly, but calculated from the on-shell condition.
Default value: 0.

energy_resolution_rel
[float or None, optional] Relative measurement uncertainty for the energy. None means
that the energy is not smeared directly, but calculated from the on-shell condition. Default
value: 0.

pt_resolution_abs
[float or None, optional] Absolute measurement uncertainty for the pT in GeV. None means
that the pT is not smeared directly, but calculated from the on-shell condition. Default
value: 0.

pt_resolution_rel
[float or None, optional] Relative measurement uncertainty for the pT. None means that the
pT is not smeared directly, but calculated from the on-shell condition. Default value: 0.

eta_resolution_abs
[float, optional] Absolute measurement uncertainty for eta. Default value: 0.

eta_resolution_rel
[float, optional] Relative measurement uncertainty for eta. Default value: 0.

phi_resolution_abs
[float, optional] Absolute measurement uncertainty for phi. Default value: 0.

phi_resolution_rel
[float, optional] Relative measurement uncertainty for phi. Default value: 0.

Returns

None

10.3 Module contents

10.3. Module contents 61



MadMiner Documentation, Release 0.9.5

62

Chapter 10. madminer.lhe package



CHAPTER
ELEVEN

MADMINER.LIKELIHOOD PACKAGE

11.1 Submodules

11.2 madminer.likelihood.base module

class madminer.likelihood.base.BaseLikelihood (filename, disable_morphing=False,
include_nuisance_parameters=True)

Bases: DataAnalyzer

Methods

event_loader([start, end, batch_size, ...]) Yields batches of events in the MadMiner file.

weighted_events([theta, nu, start_event, ...]) Returns all events together with the benchmark
weights (if theta is None) or weights for a given theta.

xsec_gradients(thetas[, nus, partition, ...]) Returns the gradient of total cross sections with re-
spect to parameters.

xsecs([thetas, nus, partition, test_split, ...]) Returns the total cross sections for benchmarks or pa-
rameter points.

create_expected_negative_log_likelihood
create_negative_log_likelihood

abstract create_expected_negative_log_likelihood(*args, **kwargs)

abstract create_negative_log_likelihood(*args, **kwargs)

11.3 madminer.likelihood.histo module

class madminer.likelihood.histo.HistoLikelihood (filename, disable_morphing=False,
include_nuisance_parameters=True)

Bases: BaselLikelihood

63



MadMiner Documentation, Release 0.9.5

Methods

create_expected_negative_log_likelihood(...) Returns a function which calculates the expected neg-
ative log likelihood for a given parameter point, eval-
uated with test data sampled according to theta_true.

create_negative_log_likelihood(x_observed][, Returns a function which calculates the

]) negative log likelihood for a given pa-
rameter  point, evaluated with a  dataset
(x_observed,n_observed,x_observed_weights).

event_loader([start, end, batch_size, ...]) Yields batches of events in the MadMiner file.

weighted_events([theta, nu, start_event, ...]) Returns all events together with the benchmark
weights (if theta is None) or weights for a given theta.

xsec_gradients(thetas[, nus, partition, ...]) Returns the gradient of total cross sections with re-
spect to parameters.

xsecs([thetas, nus, partition, test_split, ...]) Returns the total cross sections for benchmarks or pa-

rameter points.

create_expected_negative_log_likelihood (theta_true, nu_true, observables=None,
score_components=None, include_xsec=True,
luminosity=300000.0, n_asimov=None, mode="sampled’',
n_histo_toys=100000, model_file=None, hist_bins=None,
thetas_binning=None, test_split=None)

Returns a function which calculates the expected negative log likelihood for a given parameter point, eval-
uated with test data sampled according to theta_true.

Parameters

theta_true
[ndarray] Specifies the physical parameters according to which the test data is sampled.

nu_true
[ndarray] Specifies the nuisance parameters according to which the test data is sampled.

observables
[List of str or None , optional] Kinematic variables used in the histograms. The names are
the same as used for instance in DelphesReader.

score_components
[None or list of int, optional] Defines the score components used. Default value: None.

include_xsec
[bool, optional] Whether the Poisson likelihood representing the total number of events is
included in the analysis. Default value: True.

luminosity
[float, optional] Integrated luminosity in pb*{-1} assumed in the analysis. Default value:
300000.

n_asimov
[int or None, optional] Size of the Asimov sample. If None, all weighted events in the
MadMiner file are used. Default value: None.

mode
[{“weighted” , “sampled”} , optional] If “sampled”, for each evaluation of the likelihood
function, a separate set of events are sampled and histogram is created to construct the
likelihood function. If “weighted”, first a set of weighted events is sampled which is then
used to create histograms. Default value: “sampled”

64 Chapter 11. madminer.likelihood package



MadMiner Documentation, Release 0.9.5

n_histo_toys
[int or None, optional] Number of events drawn to construct the histograms used. If None
and weighted_histo is True, all events in the training fraction of the MadMiner file are used.
If None and weighted_histo is False, 100000 events are used. Default value: 100000.

model_file
[str or None, optional] Filename of a saved neural network estimating the score. Required
if score_components is not None. Default value: None.

hist_bins

[int or list of (int or ndarray) or None, optional] Defines the histogram binning. If int, gives
the number of bins automatically chosen for each summary statistic. If list, each entry
corresponds to one summary statistic (e.g. kinematic variable specified by hist_vars); an
int entry corresponds to the number of automatically chosen bins, an ndarray specifies
the bin edges along this dimension explicitly. If None, the bins are chosen according to
the defaults: for one summary statistic the default is 25 bins, for 2 it’s 8 bins along each
direction, for more it’s 5 per dimension. Default value: None.

thetas_binning
[list of ndarray or None] Specifies the parameter points used to determine the optimal bin-
ning. If none, theta_true will be used. Default value : None

test_split
Returns

negative_log_likelihood
[likelihood] Function that evaluates the negative log likelihood for a given parameter point

create_negative_log_likelihood (x_observed, observables=None, score_components=None,
n_observed=None, x_observed_weights=None, include_xsec=True,
luminosity=300000.0, mode='sampled’, n_histo_toys=100000,
model_file=None, hist_bins=None, thetas_binning=None,
test_split=None)

Returns a function which calculates the negative log likelihood for a given parameter point, evaluated with
a dataset (x_observed,n_observed,x_observed_weights).

Parameters

x_observed
[list of ndarray] Set of event observables with shape (n_events, n_observables).

observables
[list of str or None , optional] Kinematic variables used in the histograms. The names are
the same as used for instance in DelphesReader.

score_components
[None or list of int, optional] Defines the score components used. Default value: None.

n_observed
[int or None , optional] If int, number of observed events. If None, n_observed is defined
by the length of x_observed. Default: None.

x_observed_weights
[list of float or None , optional] List of event weights with shape (n_events). If None, all
events have equal weights. Default: None.

include_xsec
[bool, optional] Whether the Poisson likelihood representing the total number of events is
included in the analysis. Default value: True.

11.3. madminer.likelihood.histo module 65



MadMiner Documentation, Release 0.9.5

luminosity
[float, optional] Integrated luminosity in pb”{-1} assumed in the analysis. Default value:
300000.

mode
[{“weighted”, “sampled”, “histo”} , optional] If “sampled”, for each evaluation of the like-
lihood function, a separate set of events are sampled and histogram is created to construct
the likelihood function. If “weighted”, first a set of weighted events is sampled which is
then used to create histograms. Default value: “sampled”

n_histo_toys
[int or None, optional] Number of events drawn to construct the histograms used. If None
and weighted_histo is True, all events in the training fraction of the MadMiner file are used.
If None and weighted_histo is False, 100000 events are used. Default value: 100000.

model_file
[str or None, optional] Filename of a saved neural network estimating the score. Required
if score_components is not None. Default value: None.

hist_bins

[int or list of (int or ndarray) or None, optional] Defines the histogram binning. If int, gives
the number of bins automatically chosen for each summary statistic. If list, each entry
corresponds to one summary statistic (e.g. kinematic variable specified by hist_vars); an
int entry corresponds to the number of automatically chosen bins, an ndarray specifies
the bin edges along this dimension explicitly. If None, the bins are chosen according to
the defaults: for one summary statistic the default is 25 bins, for 2 it’s 8 bins along each
direction, for more it’s 5 per dimension. Default value: None.

thetas_binning
[list of ndarray or None] Specifies the parameter points used to determine the optimal bin-
ning. This is requires if hist_bins doesn’t already fully specify the binning of the histogram.
Default value : None
test_split
Returns

negative_log_likelihood
[likelihood] Function that evaluates the negative log likelihood for a given parameter point

11.4 madminer.likelihood.manipulate module

madminer.likelihood.manipulate. fix_params (negative_log_likelihood, theta, fixed_components=None)

Function that reduces the dimensionality of a likelihood function by fixing some of the components.
Parameters

negative_log_likelihood
[likelihood] Function returned by Likelihood class (for example NeuralLikeli-
hood.create_expected_negative_log_likelihood()") which takes an n-dimensional input
parameter.

theta
[list of float] m-dimensional vector of coordinate which will be fixed.

fixed_components
[list of int or None, optional.] m-dimensional vector of coordinate indices provided in theta.

66 Chapter 11. madminer.likelihood package



MadMiner Documentation, Release 0.9.5

fixed_components=[0,1] will fix the 1st and 2nd component of the parameter point. If None,
uses [0, ..., m-1].

Returns

constrained_nll_negative_log_likelihood
[likelihood] Constrained likelihood function which takes an n-m dimensional input parame-
ter.

madminer.likelihood.manipulate.profile_log_likelihood (negative_log_likelihood,
remaining_components=None,
grid_ranges=None, grid_resolutions=25,
thetas_eval=None, theta_start=None,
dof=None, method="TNC")

Takes a likelihood function depending on N parameters, and evaluates for a set of M-dimensional parameter
points (either grid or explicitly specified) while the remaining N-M parameters are profiled over.

Parameters

negative_log_likelihood
[likelihood] Function returned by Likelihood class (for example NeuralLikeli-
hood.create_expected_negative_log_likelihood()").

remaining_components
[list of int or None , optional] List with M entries, each an int with 0 <= remain-
ing_components[i] < N. Denotes which parameters are kept, and their new order. All other
parameters or projected out (set to zero). If None, all components are kept. Default: None

grid_ranges
[list of (tuple of float) or None, optional] Specifies the boundaries of the parameter grid on
which the p-values are evaluated. It should be [(min, max), (min, max), ..., (min, max)],
where the list goes over all parameters and min and max are float. If None, thetas_eval has
to be given. Default: None.

grid_resolutions
[int or list of int, optional] Resolution of the parameter space grid on which the p-values are
evaluated. If int, the resolution is the same along every dimension of the hypercube. If list
of int, the individual entries specify the number of points along each parameter individually.
Doesn’t have any effect if grid_ranges is None. Default value: 25.

thetas_eval
[ndarray or None , optional] Manually specifies the parameter point at which the likelihood
and p-values are evaluated. If None, grid_ranges and resolution are used instead to construct
aregular grid. Default value: None.

theta_start
[ndarray or None , optional] Manually specifies a parameter point which is the starting
point for the minimization algorithm which find the maximum likelihood point. If None,
theta_start = 0 is used. Default is None.

dof
[int or None, optional] If not None, sets the number of parameters for the calculation of the
p-values. If None, the overall number of parameters is used. Default value: None.

method
[{“TNC”,” L-BFGS-B”} , optional] Minimization method used. Default value: “TNC”

Returns

11.4. madminer.likelihood.manipulate module 67



MadMiner Documentation, Release 0.9.5

parameter_grid
[ndarray] Parameter points at which the p-values are evaluated with shape (n_grid_points,
n_parameters).

p_values
[ndarray] Observed p-values for each parameter point on the grid, with shape

(n_grid_points,).

mle
[int] Index of the parameter point with the best fit (largest p-value / smallest -2 log likelihood
ratio).

log_likelihood_ratio
[ndarray or None] log likelihood ratio based only on kinematics for each point of the grid,
with shape (n_grid_points, ).

madminer.likelihood.manipulate.project_log_likelihood(negative_ log_likelihood,
remaining_components=None,
grid_ranges=None, grid_resolutions=25,
dof=None, thetas_eval=None)

Takes a likelihood function depending on N parameters, and evaluates for a set of M-dimensional parameter
points (either grid or explicitly specified) while the remaining N-M parameters are set to zero.

Parameters

negative_log_likelihood
[likelihood] Function returned by Likelihood class (for example NeuralLikeli-
hood.create_expected_negative_log_likelihood()").

remaining_components
[list of int or None , optional] List with M entries, each an int with 0 <= remain-
ing_components[i] < N. Denotes which parameters are kept, and their new order. All other
parameters or projected out (set to zero). If None, all components are kept. Default: None

grid_ranges
[list of (tuple of float) or None, optional] Specifies the boundaries of the parameter grid on
which the p-values are evaluated. It should be [(min, max), (min, max), ..., (min, max)],
where the list goes over all parameters and min and max are float. If None, thetas_eval has
to be given. Default: None.

grid_resolutions
[int or list of int, optional] Resolution of the parameter space grid on which the p-values are
evaluated. If int, the resolution is the same along every dimension of the hypercube. If list
of int, the individual entries specify the number of points along each parameter individually.
Doesn’t have any effect if grid_ranges is None. Default value: 25.

dof
[int or None, optional] If not None, sets the number of parameters for the calculation of the
p-values. If None, the overall number of parameters is used. Default value: None.

thetas_eval
[ndarray or None , optional] Manually specifies the parameter point at which the likelihood
and p-values are evaluated. If None, grid_ranges and resolution are used instead to construct
aregular grid. Default value: None.

Returns

parameter_grid
[ndarray] Parameter points at which the p-values are evaluated with shape (n_grid_points,
n_parameters).

68 Chapter 11. madminer.likelihood package



MadMiner Documentation, Release 0.9.5

p_values
[ndarray] Observed p-values for each parameter point on the grid, with shape

(n_grid_points, ).

mle
[int] Index of the parameter point with the best fit (largest p-value / smallest -2 log likelihood

ratio).

log_likelihood_ratio
[ndarray or None] log likelihood ratio based only on kinematics for each point of the grid,
with shape (n_grid_points,).

11.5 madminer.likelihood.neural module

class madminer.likelihood.neural.NeuralLikelihood (filename, disable_morphing=False,
include_nuisance_parameters=True)

Bases: BaseLikelihood

Methods
event_loader([start, end, batch_size, ...]) Yields batches of events in the MadMiner file.
weighted_events([theta, nu, start_event, ...]) Returns all events together with the benchmark
weights (if theta is None) or weights for a given theta.
xsec_gradients(thetas[, nus, partition, ...]) Returns the gradient of total cross sections with re-
spect to parameters.
xsecs([thetas, nus, partition, test_split, ...]) Returns the total cross sections for benchmarks or pa-

rameter points.

create_expected_negative_log_likelihood
create_negative_log_likelihood

create_expected_negative_log_likelihood(model_file, theta_true, nu_true, include_xsec=True,
luminosity=300000.0, n_asimov=None, mode='"sampled’,
n_weighted=10000, xsec_mode="interpol")

create_negative_log_likelihood(model_file, x_observed, n_observed=None,
x_observed_weights=None, include_xsec=True,
luminosity=300000.0, mode="weighted', n_weighted=10000,
xsec_mode='interpol")

11.5. madminer.likelihood.neural module 69



MadMiner Documentation, Release 0.9.5

11.6 Module contents

70

Chapter 11. madminer.likelihood package



CHAPTER
TWELVE

MADMINER.LIMITS PACKAGE

12.1 Submodules

12.2 madminer.limits.asymptotic_limits module

class madminer.limits.asymptotic_limits.AsymptoticLimits(filename=None,
include_nuisance_parameters=False)

Bases: DataAnalyzer
Statistical inference based on asymptotic properties of the likelihood ratio as test statistics.
This class provides two high-level functions:

* AsymptoticLimits.observed_limits() calculates p-values over a grid in parameter space for a given set of
observed data.

* AsymptoticLimits.expected_limits() calculates expected p-values over a grid in parameter space based on
“Asimov data”, a large hypothetical data set drawn from a given parameter point. This method is typically
used to define expected exclusion limits or significances.

Both functions support inference based on...
* histograms of kinematic observables,

* based on histograms of score vectors estimated with the madminer.ml.ScoreEstimator class (SALLY and
SALLINO techniques),

¢ based on likelihood or likelihood ratio functions estimated with the madminer.ml. LikelihoodEstimator and
madminer.ml. ParameterizedRatioEstimator classes (NDE, SCANDAL, CARL, RASCAL, ALICES, and
SO on).

Currently, this class requires a morphing setup. It does not yet support nuisance parameters.
Parameters

filename
[str] Path to MadMiner file (for instance the output of mad-
miner.delphes.DelphesProcessor.save()).

include_nuisance_parameters
[bool, optional] If True, nuisance parameters are taken into account. Currently not imple-
mented. Default value: False.

71



MadMiner Documentation, Release 0.9.5

Methods

asymptotic_p_value(log_likelihood_ratio[, dof])  Calculates the p-value corresponding to a given log
likelihood ratio and number of degrees of freedom
assuming the asymptotic approximation.

event_loader([start, end, batch_size, ...]) Yields batches of events in the MadMiner file.

expected_1limits(mode, theta_true[, ...]) Calculates expected p-values over a grid in parameter
space.

observed_limits(mode, x_observed], ...]) Calculates p-values over a grid in parameter space
based on a given set of observed events.

weighted_events([theta, nu, start_event, ...]) Returns all events together with the benchmark
weights (if theta is None) or weights for a given theta.

xsec_gradients(thetas[, nus, partition, ...]) Returns the gradient of total cross sections with re-
spect to parameters.

xsecs([thetas, nus, partition, test_split, ...]) Returns the total cross sections for benchmarks or pa-

rameter points.

asymptotic_p_value(log_likelihood_ratio, dof=None)

Calculates the p-value corresponding to a given log likelihood ratio and number of degrees of freedom
assuming the asymptotic approximation.

Parameters

log_likelihood_ratio
[ndarray] Log likelihood ratio (without the factor -2)

dof
[int or None, optional] Number of parameters / degrees of freedom. None means the overall
number of parameters is used. Default value: None.

Returns

p_values
[ndarray] p-values.

expected_limits (mode, theta_true, grid_ranges=None, grid_resolutions=25, include_xsec=True,
model_file=None, hist_vars=None, score_components=None, hist_bins=None,
thetaref=None, luminosity=300000.0, weighted_histo=True, n_histo_toys=100000,
histo_theta_batchsize=1000, dof=None, test_split=0.2, return_histos=True,
return_asimov=~False, fix_adaptive_binning='auto-grid’,
sample_only_from_closest_benchmark=True, postprocessing=None, n_asimov=None,
n_binning_toys=100000, thetas_eval=None)

Calculates expected p-values over a grid in parameter space.

theta_true specifies which parameter point is assumed to be true. Based on this parameter point, the function
generates a large artificial “Asimov data set”. p-values are then calculated with frequentist hypothesis tests
using the likelihood ratio as test statistic. The asymptotic approximation is used, see https://arxiv.org/abs/
1007.1727.

Depending on the keyword mode, the likelihood ratio is calculated with one of several different methods:
* With mode="rate”, MadMiner only calculates the Poisson likelihood of the total number of events.

* With mode="histo”, the kinematic likelihood is estimated with histograms of a small number of ob-
servables given by the keyword hist_vars. hist_bins determines the binning of the histograms. in-
clude_xsec sets whether the Poisson likelihood of the total number of events is included or not.

72 Chapter 12. madminer.limits package


https://arxiv.org/abs/1007.1727
https://arxiv.org/abs/1007.1727

MadMiner Documentation, Release 0.9.5

* With mode="ml", the likelihood ratio is estimated with a parameterized neural network. model_file
has to point to the filename of a saved LikelihoodEstimator or ParameterizedRatioEstimator instance or
acorresponding Ensemble (i.e. be the same filename used when calling estimator.save()). include_xsec
sets whether the Poisson likelihood of the total number of events is included or not.

e With mode="sally”, the likelihood ratio is estimated with histograms of the components of the esti-
mated score vector. model_file has to point to the filename of a saved ScoreEstimator instance. With
score_components, the histogram can be restricted to some components of the score. hist_bins defines
the binning of the histograms. include_xsec sets whether the Poisson likelihood of the total number of
events is included or not.

* With mode="adaptive-sally”, the likelihood ratio is estimated with histograms of the components
of the estimated score vector. The approach is essentially the same as for “sally”, but the histogram
binning is optimized for every parameter point by adding a new h = score * (theta - thetaref) dimension
to the histogram. include_xsec sets whether the Poisson likelihood of the total number of events is
included or not.

* With mode="sallino”, the likelihood ratio is estimated with one-dimensional histograms of the scalar
variable i = score * (theta - thetaref) for each point theta along the parameter grid. model_file has to
point to the filename of a saved ScoreEstimator instance. hist_bins defines the binning of the histogram.
include_xsec sets whether the Poisson likelihood of the total number of events is included or not.

MadMiner calculates one p-value for every parameter point on an evenly spaced grid specified by
grid_ranges and grid_resolutions. For instance, in a three-dimensional parameter space, grid_ranges=[(-
1., 1.), (-2., 2.), (-3., 3.)] and grid_resolutions=[10,10,10] will start the calculation along 103 parameter
points in a cube with edges (-7, 1) in the first parameter and so on.

Parameters

mode
[{“rate”, “histo”, “ml”, “sally”, “sallino”, “adaptive-sally”’}] Defines how the likelihood
ratio test statistic is calculated. See above.

theta_true
[ndarray] Parameter point assumed to be true to calculate the Asimov data.

grid_ranges
[list of (tuple of float) or None, optional] Specifies the boundaries of the parameter grid on
which the p-values are evaluated. It should be [(min, max), (min, max), ..., (min, max)],
where the list goes over all parameters and min and max are float. If None, thetas_eval has
to be given. Default: None.

grid_resolutions
[int or list of int, optional] Resolution of the parameter space grid on which the p-values are
evaluated. If int, the resolution is the same along every dimension of the hypercube. If list
of int, the individual entries specify the number of points along each parameter individually.
Default value: 25.

include_xsec
[bool, optional] Whether the Poisson likelihood representing the total number of events is
included in the analysis. Default value: True.

model_file
[str or None, optional] Filename of a saved neural network estimating the likelihood, like-
lihood ratio, or score. Required if mode is anything except “rate” or “histo”. Default value:
None.

hist_vars
[list of str or None, optional] Kinematic variables used in the histograms when mode is

12.2. madminer.limits.asymptotic_limits module 73



MadMiner Documentation, Release 0.9.5

“histo”. The names are the same as used for instance in DelphesReader. Default value:
None.

score_components
[None or list of int, optional] Defines the score components used when mode is “sally” or
“adaptive-sally”. Default value: None.

hist_bins

[int or list of (int or ndarray) or None, optional] Defines the histogram binning when mode
is “histo”, “sally”, “adaptive-sally”, or “sallino”. If int, gives the number of bins automat-
ically chosen for each summary statistic. If list, each entry corresponds to one summary
statistic (e.g. kinematic variable specified by hist_vars or estimated score component); an
int entry corresponds to the number of automatically chosen bins, an ndarray specifies the
bin edges along this dimension explicitly. If None, the bins are chosen according to the de-
faults: for one summary statistic the default is 25 bins, for 2 it’s 8 bins along each direction,
for more it’s 5 per dimension. Default value: None.

thetaref
[ndarray or None, optional] Defines the reference parameter point at which the score is
evaluated for mode “sallino” or “adaptive-sally”. If None, the origin in parameter space,
[0.,0.,...,0.], is used. Default value: None.

luminosity
[float, optional] Integrated luminosity in pb”{-1} assumed in the analysis. Default value:
300000.

weighted_histo
[bool, optional] If True, the histograms used for the modes “histo”, “sally”, “sallino”, and
“adaptive-sally” use one set of weighted events to construct the histograms at every point
along the parameter grid, only with different weights for each parameter point on the grid.
If False, independent unweighted event samples are drawn for each parameter point on the
grid. Default value: True.

n_histo_toys
[int or None, optional] Number of events drawn to construct the histograms used for the
modes “histo”, “sally”, “sallino”, and “adaptive-sally”. If None and weighted_histo is True,
all events in the training fraction of the MadMiner file are used. If None and weighted_histo

is False, 100000 events are used. Default value: 100000.

histo_theta_batchsize
[int or None, optional] Number of histograms constructed in parallel for the modes “histo”,

“sally”, “sallino”, and “adaptive-sally” and if weighted_histo is True. A larger number
speeds up the calculation, but requires more memory. Default value: 1000.

dof
[int or None, optional] If not None, sets the number of parameters for the calculation of the
p-values. If None, the overall number of parameters is used. Default value: None.

test_split
[float, optional] Fraction of weighted events in the MadMiner file reserved for evaluation.
Default value: 0.2.

return_histos
[bool, optional] If True and if mode is “histo”, “sally”, “adaptive-sally”, or “sallino”, the
function returns histogram objects for each point along the grid.

fix_adaptive_binning

CLINNT3

[[False, “center”, “grid”, “auto-grid”, “auto-center’’], optional] If not False and if mode is

CLINT3

“histo”, “sally”, “adaptive-sally”, or “sallino”, the automatic histogram binning is the same

74 Chapter 12. madminer.limits package



MadMiner Documentation, Release 0.9.5

for every point along the parameter grid. For “center”, the central point in the parameter
grid is used to determine the binning, for “grid” all points in the parameter grid are com-
bined for this. For “auto-grid” or “auto-center”, this option is turned on if mode is “histo”
or “sally”, but not for “adaptive-sally” or “sallino”. Default value: “auto-grid”.

sample_only_from_closest_benchmark
[bool, optional] If True, only events originally generated from the closest benchmarks are
used when generating the Asimov data (and, if weighted_histo is False, the histogram data).
Default value: True.

return_asimov
[bool, optional] Whether the values of the summary statistics in the Asimov (“expected
observed”) data set are returned. Default value: False.

postprocessing
[None or function, optional] If not None, points to a function that processes the summary
statistics before being fed into histograms. Default value: None.

n_binning_toys
[int or None, optional] Number of toy events used to determine the binning of adaptive
histograms. Default value: 100000.

n_asimov
[int or None, optional] Size of the Asimov sample. If None, all weighted events in the
MadMiner file are used. Default value: None.

thetas_eval
[ndarray or None] Manually specifies the parameter point at which the likelihood and p-
values are evaluated. If None, grid_ranges and resolution are used instead to construct a
regular grid. Default value: None.

Returns

parameter_grid
[ndarray] Parameter points at which the p-values are evaluated with shape (n_grid_points,
n_parameters).

p_values
[ndarray] Observed p-values for each parameter point on the grid, with shape

(n_grid_points,).

mle
[int] Index of the parameter point with the best fit (largest p-value / smallest -2 log likelihood
ratio).

log_likelihood_ratio_kin
[ndarray or None] log likelihood ratio based only on kinematics for each point of the grid,
with shape (n_grid_points, ).

log_likelihood_rate
[ndarray or None] log likelihood based only on the total rate for each point of the grid, with
shape (n_grid_points,).

histos
[None or list of Histogram] None if return_histos is False. Otherwise a list of histogram
objects for each point on the grid. This can be useful for debugging or for plotting the
histograms.

12.2.

madminer.limits.asymptotic_limits module

75



MadMiner Documentation, Release 0.9.5

observed_limits (mode, x_observed, grid_ranges=None, grid_resolutions=25, include_xsec=True,

model_file=None, hist_vars=None, score_components=None, hist_bins=None,
thetaref=None, luminosity=300000.0, weighted_histo=True, n_histo_toys=100000,
histo_theta_batchsize=1000, n_observed=None, dof=None, test_split=0.2,
return_histos=True, return_observed=False, fix_adaptive_binning="auto-grid’,
postprocessing=None, n_binning_toys=100000, thetas_eval=None)

Calculates p-values over a grid in parameter space based on a given set of observed events.

x_observed specifies the observed data as an array of observables, using the same observables and their
order as used throughout the MadMiner workflow.

The p-values with frequentist hypothesis tests using the likelihood ratio as test statistic. The asymptotic
approximation is used, see https://arxiv.org/abs/1007.1727.

Depending on the keyword mode, the likelihood ratio is calculated with one of several different methods:

With mode="rate”, MadMiner only calculates the Poisson likelihood of the total number of events.

With mode="histo”, the kinematic likelihood is estimated with histograms of a small number of ob-
servables given by the keyword hist_vars. hist_bins determines the binning of the histograms. in-
clude_xsec sets whether the Poisson likelihood of the total number of events is included or not.

With mode="ml”, the likelihood ratio is estimated with a parameterized neural network. model_file
has to point to the filename of a saved LikelihoodEstimator or ParameterizedRatioEstimator instance or
acorresponding Ensemble (i.e. be the same filename used when calling estimator.save()). include_xsec
sets whether the Poisson likelihood of the total number of events is included or not.

With mode="sally”, the likelihood ratio is estimated with histograms of the components of the esti-
mated score vector. model_file has to point to the filename of a saved ScoreEstimator instance. With
score_components, the histogram can be restricted to some components of the score. hist_bins defines
the binning of the histograms. include_xsec sets whether the Poisson likelihood of the total number of
events is included or not.

With mode="adaptive-sally”, the likelihood ratio is estimated with histograms of the components
of the estimated score vector. The approach is essentially the same as for “sally”, but the histogram
binning is optimized for every parameter point by adding a new h = score * (theta - thetaref) dimension
to the histogram. include_xsec sets whether the Poisson likelihood of the total number of events is
included or not.

With mode="sallino”, the likelihood ratio is estimated with one-dimensional histograms of the scalar
variable i = score * (theta - thetaref) for each point theta along the parameter grid. model_file has to
point to the filename of a saved ScoreEstimator instance. hist_bins defines the binning of the histogram.
include_xsec sets whether the Poisson likelihood of the total number of events is included or not.

MadMiner calculates one p-value for every parameter point on an evenly spaced grid specified by
grid_ranges and grid_resolutions. For instance, in a three-dimensional parameter space, grid_ranges=[(-
1., 1.),(-2., 2.), (-3., 3.)] and grid_resolutions=[10,10,10] will start the calculation along 10"3 parameter
points in a cube with edges (-7, 1) in the first parameter and so on.

Parameters

mode
[{“rate”, “histo”, “ml”, “sally”, “sallino”, “adaptive-sally”’}] Defines how the likelihood
ratio test statistic is calculated. See above.

x_observed
[ndarray] Observed data with shape (n_events, n_observables). The observables have to
be the same used throughout the MadMiner analysis, for instance specified in the Delphes-
Reader class with add_observables.

76

Chapter 12. madminer.limits package


https://arxiv.org/abs/1007.1727

MadMiner Documentation, Release 0.9.5

grid_ranges
[list of (tuple of float) or None, optional] Specifies the boundaries of the parameter grid on
which the p-values are evaluated. It should be [(min, max), (min, max), ..., (min, max)],
where the list goes over all parameters and min and max are float. If None, thetas_eval has
to be given. Default: None.

grid_resolutions
[int or list of int, optional] Resolution of the parameter space grid on which the p-values are
evaluated. If int, the resolution is the same along every dimension of the hypercube. If list
of int, the individual entries specify the number of points along each parameter individually.
Doesn’t have any effect if grid_ranges is None. Default value: 25.

include_xsec
[bool, optional] Whether the Poisson likelihood representing the total number of events is
included in the analysis. Default value: True.

model_file
[str or None, optional] Filename of a saved neural network estimating the likelihood, like-
lihood ratio, or score. Required if mode is anything except “rate” or “histo”. Default value:
None.

hist_vars
[list of str or None, optional] Kinematic variables used in the histograms when mode is
“histo”. The names are the same as used for instance in DelphesReader. Default value:
None.

score_components
[None or list of int, optional] Defines the score components used when mode is “sally” or
“adaptive-sally”. Default value: None.

hist_bins

[int or list of (int or ndarray) or None, optional] Defines the histogram binning when mode
is “histo”, “sally”, “adaptive-sally”, or “sallino”. If int, gives the number of bins automat-
ically chosen for each summary statistic. If list, each entry corresponds to one summary
statistic (e.g. kinematic variable specified by hist_vars or estimated score component); an
int entry corresponds to the number of automatically chosen bins, an ndarray specifies the
bin edges along this dimension explicitly. If None, the bins are chosen according to the de-
faults: for one summary statistic the default is 25 bins, for 2 it’s 8 bins along each direction,
for more it’s 5 per dimension. Default value: None.

thetaref
[ndarray or None, optional] Defines the reference parameter point at which the score is
evaluated for mode “sallino” or “adaptive-sally”. If None, the origin in parameter space,
[0.,0.,...,0.], is used. Default value: None.

luminosity
[float, optional] Integrated luminosity in pb”{-1} assumed in the analysis. Default value:
300000.

weighted_histo
[bool, optional] If True, the histograms used for the modes “histo”, “sally”, “sallino”, and
“adaptive-sally” use one set of weighted events to construct the histograms at every point
along the parameter grid, only with different weights for each parameter point on the grid.
If False, independent unweighted event samples are drawn for each parameter point on the
grid. Default value: True.

n_histo_toys
[int or None, optional] Number of events drawn to construct the histograms used for the

CLINT3 CLINTY

modes “histo”, “sally”, “sallino”, and “adaptive-sally”. If None and weighted_histo is True,

12.2. madminer.limits.asymptotic_limits module

77



MadMiner Documentation, Release 0.9.5

all events in the training fraction of the MadMiner file are used. If None and weighted_histo
is False, 100000 events are used. Default value: 100000.

histo_theta_batchsize
[int or None, optional] Number of histograms constructed in parallel for the modes “histo”,

“sally”, “sallino”, and “adaptive-sally” and if weighted_histo is True. A larger number
speeds up the calculation, but requires more memory. Default value: 1000.

n_observed
[int or None, optional] If not None, the likelihood ratio is rescaled to this number of ob-
served events before calculating p-values. Default value: None.

dof
[int or None, optional] If not None, sets the number of parameters for the calculation of the
p-values. If None, the overall number of parameters is used. Default value: None.

test_split
[float, optional] Fraction of weighted events in the MadMiner file reserved for evaluation.
Default value: 0.2.

return_histos
[bool, optional] If True and if mode is “histo”, “sally”, “adaptive-sally”, or “sallino”, the
function returns histogram objects for each point along the grid.

fix_adaptive_binning

CLINY3

[[False, “center”, “grid”, “auto-grid”, “auto-center’’], optional] If not False and if mode is
“histo”, “sally”, “adaptive-sally”, or “sallino”, the automatic histogram binning is the same
for every point along the parameter grid. For “center”, the central point in the parameter
grid is used to determine the binning, for “grid” all points in the parameter grid are com-
bined for this. For “auto-grid” or “auto-center”, this option is turned on if mode is “histo”

or “sally”, but not for “adaptive-sally” or “sallino”. Default value: “auto-grid”.

return_observed
[bool, optional] Whether the observed values of the summary statistics are returned. De-
fault value: False.

postprocessing
[None or function] If not None, points to a function that processes the summary statistics
before being fed into histograms. Default value: None.

n_binning_toys
[int or None] Number of toy events used to determine the binning of adaptive histograms.
Default value: 100000.

thetas_eval
[ndarray or None] Manually specifies the parameter point at which the likelihood and p-
values are evaluated. If None, grid_ranges and resolution are used instead to construct a
regular grid. Default value: None.

Returns

parameter_grid
[ndarray] Parameter points at which the p-values are evaluated with shape (n_grid_points,
n_parameters).

p_values
[ndarray] Observed p-values for each parameter point on the grid, with shape

(n_grid_points, ).

mle
[int] Index of the parameter point with the best fit (largest p-value / smallest -2 log likelihood

78 Chapter 12. madminer.limits package



MadMiner Documentation, Release 0.9.5

ratio).

log_likelihood_ratio_kin
[ndarray or None] log likelihood ratio based only on kinematics for each point of the grid,
with shape (n_grid_points, ).

log_likelihood_rate
[ndarray or None] log likelihood based only on the total rate for each point of the grid, with
shape (n_grid_points,).

histos
[None or list of Histogram] None if return_histos is False. Otherwise a list of histogram
objects for each point on the grid. This can be useful for debugging or for plotting the
histograms.

12.3 Module contents

12.3. Module contents 79



MadMiner Documentation, Release 0.9.5

80

Chapter 12. madminer.limits package



CHAPTER
THIRTEEN

MADMINER.ML PACKAGE

13.1 Submodules

13.2 madminer.ml.base module

class madminer.ml.base.ConditionalEstimator (features=None, n_hidden=(100,), activation="tanh’,
dropout_prob=0.0)

Bases: Estimator, ABC

Abstract class for estimator that is conditional on theta. Subclassed by ParameterizedRatioEstimator, DoublePa-
rameterizedRatioEstimator, and LikelihoodEstimator (but not ScoreEstimator).

Adds functionality to rescale parameters.

Methods

calculate_fisher_information(x][, theta, ...]) Calculates the expected Fisher information matrix
based on the kinematic information in a given number
of events.

evaluate_log_likelihood(*args, **kwargs) Log likelihood estimation.

evaluate_log_likelihood_ratio(*args, Log likelihood ratio estimation.

**kwargs)

evaluate_score(*args, **kwargs) Score estimation.

load(filename) Loads a trained model from files.

save(filename[, save_model]) Saves the trained model to four files: a JSON file

with the settings, a pickled pyTorch state dict file, and
numpy files for the mean and variance of the inputs
(used for input scaling).

evaluate
initialize_input_transform
initialize_parameter_transform
train

initialize_parameter_transform(theta, transform=True, overwrite=True)

81



MadMiner Documentation, Release 0.9.5

load (filename)

Loads a trained model from files.
Parameters

filename
[str] Path to the files. ‘_settings.json’ and ‘_state_dict.pl’ will be added.

Returns
None

save (filename, save_model=False)

Saves the trained model to four files: a JSON file with the settings, a pickled pyTorch state dict file, and
numpy files for the mean and variance of the inputs (used for input scaling).

Parameters

filename
[str] Path to the files. ‘_settings.json’ and ‘_state_dict.pl’ will be added.

save_model
[bool, optional] If True, the whole model is saved in addition to the state dict. This is not
necessary for loading it again with Estimator.load(), but can be useful for debugging, for
instance to plot the computational graph.

Returns
None

class madminer.ml.base.Estimator (features=None, n_hidden=(100,), activation="tanh', dropout_prob=0.0)
Bases: ABC

Abstract class for any ML estimator. Subclassed by ParameterizedRatioEstimator, DoubleParameterizedRatioEs-
timator, ScoreEstimator, and LikelihoodEstimator.

Each instance of this class represents one neural estimator. The most important functions are:

* Estimator.train() to train an estimator. The keyword method determines the inference technique and whether
a class instance represents a single-parameterized likelihood ratio estimator, a doubly-parameterized like-
lihood ratio estimator, or a local score estimator.

e Estimator.evaluate() to evaluate the estimator.
e Estimator.save() to save the trained model to files.
e Estimator.load() to load the trained model from files.

Please see the tutorial for a detailed walk-through.

82 Chapter 13. madminer.ml package



MadMiner Documentation, Release 0.9.5

Methods

calculate_fisher_information(x[, theta, ...]) Calculates the expected Fisher information matrix
based on the kinematic information in a given number
of events.

evaluate_log_likelihood(*args, **kwargs) Log likelihood estimation.

evaluate_log_likelihood_ratio(*args, Log likelihood ratio estimation.

**kwargs)

evaluate_score(*args, **kwargs) Score estimation.

load(filename) Loads a trained model from files.

save(filename[, save_model]) Saves the trained model to four files: a JSON file

with the settings, a pickled pyTorch state dict file, and
numpy files for the mean and variance of the inputs
(used for input scaling).

evaluate
initialize_input_transform
train

calculate_fisher_information(x, theta=None, weights=None, n_events=1, sum_events=True)

Calculates the expected Fisher information matrix based on the kinematic information in a given number
of events.

Parameters

X
[str or ndarray] Sample of observations, or path to numpy file with observations. Note that
this sample has to be sampled from the reference parameter where the score is estimated
with the SALLY / SALLINO estimator.

theta: None or ndarray
Numerator parameter point, or filename of a pickled numpy array. Has no effect for
ScoreEstimator.

weights
[None or ndarray, optional] Weights for the observations. If None, all events are taken to
have equal weight. Default value: None.

n_events
[float, optional] Expected number of events for which the kinematic Fisher information
should be calculated. Default value: 1.

sum_events
[bool, optional] If True, the expected Fisher information summed over the events x is cal-
culated. If False, the per-event Fisher information for each event is returned. Default value:
True.

Returns

fisher_information
[ndarray] Expected kinematic Fisher information matrix with shape (n_events,
n_parameters, n_parameters) if sum_events is False or (n_parameters, n_parameters) if
sum_events is True.

abstract evaluate(*args, **kwargs)

13.2. madminer.ml.base module 83



MadMiner Documentation, Release 0.9.5

abstract evaluate_log_likelihood(*args, **kwargs)

Log likelihood estimation. Signature depends on the type of estimator. The first returned value is the log
likelihood with shape (n_thetas, n_x).

abstract evaluate_log_likelihood_ratio(*args, **kwargs)

Log likelihood ratio estimation. Signature depends on the type of estimator. The first returned value is the
log likelihood ratio with shape (n_thetas, n_x) or (n_x).

abstract evaluate_score(*args, **kwargs)

Score estimation. Signature depends on the type of estimator. The only returned value is the score with
shape (n_x).

initialize_input_transform(x, transform=True, overwrite=True)
load(filename)
Loads a trained model from files.
Parameters

filename
[str] Path to the files. ‘_settings.json’ and ‘_state_dict.pl’ will be added.

Returns
None

save (filename, save_model=False)
Saves the trained model to four files: a JSON file with the settings, a pickled pyTorch state dict file, and
numpy files for the mean and variance of the inputs (used for input scaling).

Parameters

filename
[str] Path to the files. ‘_settings.json’ and ‘_state_dict.pl’ will be added.

save_model
[bool, optional] If True, the whole model is saved in addition to the state dict. This is not
necessary for loading it again with Estimator.load(), but can be useful for debugging, for
instance to plot the computational graph.

Returns
None
abstract train(*args, **kwargs)

exception madminer.ml.base.TheresAGoodReasonThisDoesntWork

Bases: Exception

13.3 madminer.ml.double_parameterized_ratio module

class madminer.ml.double_parameterized_ratio.DoubleParameterizedRatioEstimator (features=None,
n_hidden=(100,),
activa-
tion="tanh’,
dropout_prob=0.0)

84 Chapter 13. madminer.ml package



MadMiner Documentation, Release 0.9.5

Bases: ConditionalEstimator

A neural estimator of the likelihood ratio as a function of the observation x, the numerator hypothesis theta0, and

the denominator hypothesis thetal.

Methods

calculate_fisher_information(*args,
**kwargs)

Calculates the expected Fisher information matrix
based on the kinematic information in a given number
of events.

evaluate_log_likelihood(*args, **kwargs)

Log likelihood estimation.

evaluate_log_likelihood_ratio(x, thetaO,
thetal)

Evaluates the log likelihood ratio as a function of the
observation x, the numerator hypothesis thetaO, and
the denominator hypothesis thetal.

evaluate_score(*args, **kwargs)

Score estimation.

load(filename)

Loads a trained model from files.

Saves the trained model to four files: a JSON file
with the settings, a pickled pyTorch state dict file, and
numpy files for the mean and variance of the inputs
(used for input scaling).

Trains the network.

save(filename[, save_model])

train(method, X, y, theta0, thetal[, r_xz, ...])

evaluate
initialize_input_transform
initialize_parameter_transform

calculate_fisher_information(*args, **kwargs)

Calculates the expected Fisher information matrix based on the kinematic information in a given number
of events.

Parameters

X
[str or ndarray] Sample of observations, or path to numpy file with observations. Note that
this sample has to be sampled from the reference parameter where the score is estimated
with the SALLY / SALLINO estimator.

theta: None or ndarray
Numerator parameter point, or filename of a pickled numpy array.
ScoreEstimator.

Has no effect for

weights
[None or ndarray, optional] Weights for the observations. If None, all events are taken to
have equal weight. Default value: None.

n_events
[float, optional] Expected number of events for which the kinematic Fisher information
should be calculated. Default value: 1.

sum_events
[bool, optional] If True, the expected Fisher information summed over the events x is cal-
culated. If False, the per-event Fisher information for each event is returned. Default value:
True.

13.3. madminer.ml.double_parameterized_ratio module 85



MadMiner Documentation, Release 0.9.5

Returns

fisher_information
[ndarray] Expected kinematic Fisher information matrix with shape (n_events,
n_parameters, n_parameters) if sum_events is False or (n_parameters, n_parameters) if
sum_events is True.

evaluate(*args, **kwargs)

evaluate_log_likelihood(*args, **kwargs)

Log likelihood estimation. Signature depends on the type of estimator. The first returned value is the log
likelihood with shape (n_thetas, n_x).

evaluate_log_likelihood_ratio(x, theta0, thetal, test_all_combinations=True, evaluate_score=False)

Evaluates the log likelihood ratio as a function of the observation x, the numerator hypothesis theta0, and
the denominator hypothesis thetal.

Parameters

X
[str or ndarray] Observations or filename of a pickled numpy array.

theta0
[ndarray or str] Numerator parameter points or filename of a pickled numpy array.

thetal
[ndarray or str] Denominator parameter points or filename of a pickled numpy array.

test_all_combinations
[bool, optional] If False, the number of samples in the observable and theta files has to
match, and the likelihood ratio is evaluated only for the combinations r(x_i | theta0O_i,
thetal _i). If True, r(x_i | thetaO_j, thetal_j) for all pairwise combinations i, j are eval-
uated. Default value: True.

evaluate_score
[bool, optional] Sets whether in addition to the likelihood ratio the score is evaluated. De-
fault value: False.

Returns

log_likelihood_ratio
[ndarray] The estimated log likelihood ratio. If test_all_combinations is True, the result
has shape (n_thetas, n_x). Otherwise, it has shape (n_samples, ).

score(
[ndarray or None] None if evaluate_score is False. Otherwise the derived estimated score at
theta0. If test_all_combinations is True, the result has shape (n_thetas, n_x, n_parameters).
Otherwise, it has shape (n_samples, n_parameters).

scorel
[ndarray or None] None if evaluate_score is False. Otherwise the derived estimated score at
thetal. If test_all_combinations is True, the result has shape (n_thetas, n_x, n_parameters).
Otherwise, it has shape (n_samples, n_parameters).

evaluate_score(*args, **kwargs)

Score estimation. Signature depends on the type of estimator. The only returned value is the score with
shape (n_x).

86 Chapter 13. madminer.ml package



MadMiner Documentation, Release 0.9.5

train(method, x, y, theta0, thetal, r_xz=None, t_xz0=None, t_xzI=None, x_val=None, y_val=None,
thetaO_val=None, thetal _val=None, r_xz_val=None, t_xz0_val=None, t_xzI_val=None, alpha=1.0,
optimizer='amsgrad', n_epochs=50, batch_size=128, initial_Ir=0.001, final_lr=0.0001,
nesterov_momentum=None, validation_split=0.25, early_stopping=True, scale_inputs=True,
shuffle_labels=False, limit_samplesize=None, memmap=False, verbose='some',
scale_parameters=True, n_workers=8, clip_gradient=None, early_stopping_patience=None)

Trains the network.
Parameters

method
[str] The inference method used for training. Allowed values are ‘alice’, ‘alices’, ‘carl’,
‘cascal’, ‘rascal’, and ‘rolr’.

X
[ndarray or str] Observations, or filename of a pickled numpy array.

y
[ndarray or str] Class labels (0 = numerator, 1 = denominator), or filename of a pickled

numpy array.

thetal
[ndarray or str] Numerator parameter point, or filename of a pickled numpy array.

thetal
[ndarray or str] Denominator parameter point, or filename of a pickled numpy array.

r_Xz
[ndarray or str or None, optional] Joint likelihood ratio, or filename of a pickled numpy
array. Default value: None.

t_xz0
[ndarray or str or None, optional] Joint scores at theta0, or filename of a pickled numpy
array. Default value: None.

t_xzl
[ndarray or str or None, optional] Joint scores at thetal, or filename of a pickled numpy
array. Default value: None.

x_val
[ndarray or str or None, optional] Validation observations, or filename of a pickled numpy
array. If None and validation_split > 0, validation data will be randomly selected from the
training data. Default value: None.

y_val
[ndarray or str or None, optional] Validation labels (0 = numerator, 1 = denominator), or
filename of a pickled numpy array. If None and validation_split > 0, validation data will
be randomly selected from the training data. Default value: None.

theta0_val
[ndarray or str or None, optional] Validation numerator parameter points, or filename of a
pickled numpy array. If None and validation_split > 0, validation data will be randomly
selected from the training data. Default value: None.

thetal_val
[ndarray or str or None, optional] Validation denominator parameter points, or filename of
a pickled numpy array. If None and validation_split > 0, validation data will be randomly
selected from the training data. Default value: None.

r_xz_val
[ndarray or str or None, optional] Validation joint likelihood ratio, or filename of a pickled

13.3. madminer.ml.double_parameterized_ratio module 87



MadMiner Documentation, Release 0.9.5

numpy array. If None and validation_split > 0, validation data will be randomly selected
from the training data. Default value: None.

t_xz0_val
[ndarray or str or None, optional] Validation joint scores at theta0, or filename of a pickled
numpy array. If None and validation_split > 0, validation data will be randomly selected
from the training data. Default value: None.

t_xz1_val
[ndarray or str or None, optional] Validation joint scores at thetal, or filename of a pickled
numpy array. If None and validation_split > 0, validation data will be randomly selected
from the training data. Default value: None.

alpha
[float, optional] Hyperparameter weighting the score error in the loss function of the ‘al-
ices’, ‘rascal’, and ‘cascal’ methods. Default value: 1.

optimizer
[{“adam”, “amsgrad”, “sgd”}, optional] Optimization algorithm. Default value: “ams-
grad”.

n_epochs
[int, optional] Number of epochs. Default value: 50.

batch_size
[int, optional] Batch size. Default value: 128.

initial_Ir
[float, optional] Learning rate during the first epoch, after which it exponentially decays to
final_Ir. Default value: 0.001.

final_Ir
[float, optional] Learning rate during the last epoch. Default value: 0.0001.

nesterov_momentum
[float or None, optional] If trainer is “sgd”, sets the Nesterov momentum. Default value:
None.

validation_split
[float or None, optional] Fraction of samples used for validation and early stopping (if
early_stopping is True). If None, the entire sample is used for training and early stopping
is deactivated. Default value: 0.25.

early_stopping
[bool, optional] Activates early stopping based on the validation loss (only if valida-
tion_split is not None). Default value: True.

scale_inputs
[bool, optional] Scale the observables to zero mean and unit variance. Default value: True.

shuffle_labels
[bool, optional] If True, the labels (y, r_xz, t_xz) are shuffled, while the observations (x)
remain in their normal order. This serves as a closure test, in particular as cross-check
against overfitting: an estimator trained with shuffle_labels=True should predict to likeli-
hood ratios around 1 and scores around 0.

limit_samplesize
[int or None, optional] If not None, only this number of samples (events) is used to train
the estimator. Default value: None.

88 Chapter 13. madminer.ml package



MadMiner Documentation, Release 0.9.5

memmap
[bool, optional.] If True, training files larger than 1 GB will not be loaded into memory at
once. Default value: False.

verbose
[{“all”, “many”, “some”, “few”, “none}, optional] Determines verbosity of training. De-
fault value: “some”.

Returns

result: ndarray
Training and validation losses from DoubleParameterizedRatioTrainer.train

13.4 madminer.ml.ensemble module

class madminer.ml.ensemble.Ensemble (estimators=None)

Bases: object
Ensemble methods for likelihood, likelihood ratio, and score estimation.
Generally, Ensemble instances can be used very similarly to Estimator instances:
¢ The initialization of Ensemble takes a list of (trained or untrained) Estimator instances.

¢ The methods Ensemble.train_one() and Ensemble.train_all() train the estimators (this can also be done
outside of Ensemble).

» Ensemble.calculate_expectation() can be used to calculate the expectation of the estimation likelihood ratio
or the expected estimated score over a validation sample. Ideally (and assuming the correct sampling), these
expectation values should be close to zero. Deviations from zero therefore point out that the estimator is
probably inaccurate.

e Ensemble.evaluate_log_likelihood)), Ensemble.evaluate_log_likelihood_ratio(), Ensem-
ble.evaluate_score(), and Ensemble.calculate_fisher_information() can then be used to calculate
ensemble predictions.

e Ensemble.save() and Ensemble.load() can store all estimators in one folder.

The individual estimators in the ensemble can be trained with different methods, but they have to be of the same
type: either all estimators are ParameterizedRatioEstimator instances, or all estimators are DoubleParameterize-
dRatioEstimator instances, or all estimators are ScoreEstimator instances, or all estimators are LikelihoodEsti-
mator instances..

Parameters

estimators

[None or list of Estimator, optional] If int, sets the number of estimators that will be created
as new MLForge instances. If list, sets the estimators directly, either from MLForge instances
or filenames (that are then loaded with MLForge.load()). If None, the ensemble is initialized
without estimators. Note that the estimators have to be consistent: either all of them are
trained with a local score method (“sally’ or ‘sallino’); or all of them are trained with a single-
parameterized method (‘carl’, ‘rolr’, ‘rascal’, ‘scandal’, ‘alice’, or ‘alices’); or all of them are
trained with a doubly parameterized method (‘carl2’, ‘rolr2’, ‘rascal2’, ‘alice2’, or ‘alices2’).
Mixing estimators of different types within one of these three categories is supported, but
mixing estimators from different categories is not and will raise a RuntimeException. Default
value: None.

Attributes

13.4. madminer.ml.ensemble module 89



MadMiner Documentation, Release 0.9.5

estimators

[list of Estimator] The estimators in the form of MLForge instances.

Methods

add_estimator(estimator)

Adds an estimator to the ensemble.

calculate_fisher_information(x[, theta, ...])

Calculates expected Fisher information matrices for
an ensemble of ScoreEstimator instances.

evaluate_log_likelihood([estimator_weights,

o))

Estimates the log likelihood from each estima-
tor and returns the ensemble mean (and, if cal-
culate_covariance is True, the covariance between
them).

evaluate_log_likelihood_ratio(]...])

Estimates the log likelihood ratio from each esti-
mator and returns the ensemble mean (and, if cal-
culate_covariance is True, the covariance between
them).

evaluate_score([estimator_weights, ...])

Estimates the score from each estimator and returns
the ensemble mean (and, if calculate_covariance is
True, the covariance between them).

load(folder)

Loads the estimator ensemble from a folder.

save(folder[, save_model])

Saves the estimator ensemble to a folder.

train_all(**kwargs)

Trains all estimators.

train_one(i, **kwargs)

Trains an individual estimator.

add_estimator (estimator)
Adds an estimator to the ensemble.

Parameters

estimator
[Estimator] The estimator.

Returns

None

calculate_fisher_information(x, theta=None, obs_weights=None, estimator_weights=None,
n_events=1, mode='score’, calculate_covariance=True,
sum_events=True, epsilon_shift=0.001)

Calculates expected Fisher information matrices for an ensemble of ScoreEstimator instances.

There are two ways of calculating the ensemble average. In the default “score” mode, the ensemble average
for the score is calculated for each event, and the Fisher information is calculated based on these mean
scores. In the “information” mode, the Fisher information is calculated for each estimator separately and
the ensemble mean is calculated only for the final Fisher information matrix. The “score” mode is generally

assumed to be more precise and is the default.

In the “score” mode, the covariance matrix of the final result is calculated in the following way:

* For each event x and each estimator a, the “shifted” predicted score is calculated as ¢_a’(x) = #(x) +
1/sqrt(n) * (t_a(x) - t(x)). Here #(x) is the mean score (averaged over the ensemble) for this event,
t_a(x) is the prediction of estimator a for this event, and # is the number of estimators. The ensemble
variance of these shifted score predictions is equal to the uncertainty on the mean of the ensemble of

original predictions.

90

Chapter 13. madminer.ml package



MadMiner Documentation, Release 0.9.5

* For each estimator a, the shifted Fisher information matrix /_a’ is calculated from the shifted predicted
scores.

¢ The ensemble covariance between all Fisher information matrices /_a’ is calculated and taken as the
measure of uncertainty on the Fisher information calculated from the mean scores.

In the “information” mode, the user has the option to treat all estimators equally (‘committee method’)
or to give those with expected score close to zero (as calculated by calculate_expectation()) a higher
weight. In this case, the ensemble mean [ is calculated as I = sum_i w_i I_i with weights w_i = exp(-
vote_expectation_weight |E[t_i]|) / sum_j exp(-vote_expectation_weight |E[t_k]|). Here I_i are the indi-
vidual estimators and E[¢_i] is the expectation value calculated by calculate_expectation().

Parameters

X
[str or ndarray] Sample of observations, or path to numpy file with observations, as saved by
the madminer.sampling.SampleAugmenter functions. Note that this sample has to be sam-
pled from the reference parameter where the score is estimated with the SALLY / SALLINO
estimator!

obs_weights
[None or ndarray, optional] Weights for the observations. If None, all events are taken to
have equal weight. Default value: None.

estimator_weights
[ndarray or None, optional] Weights for each estimator in the ensemble. If None, all esti-
mators have an equal vote. Default value: None.

n_events
[float, optional] Expected number of events for which the kinematic Fisher information
should be calculated. Default value: 1.

mode
[{“score”, “information”}, optional] If mode is “information”, the Fisher information for
each estimator is calculated individually and only then are the sample mean and covariance
calculated. If mode is “score”, the sample mean is calculated for the score for each event.
Default value: “score”.

calculate_covariance
[bool, optional] If True, the covariance between the different estimators is calculated. De-
fault value: True.

sum_events
[bool, optional] If True or mode is “information”, the expected Fisher information summed
over the events x is calculated. If False and mode is “score”, the per-event Fisher informa-
tion for each event is returned. Default value: True.

epsilon_shift
[float, optional] Small numerical factor in the error propagation. Default value: 0.001.

Returns

mean_prediction
[ndarray] Expected kinematic Fisher information matrix with shape (n_events,
n_parameters, n_parameters) if sum_events is False and mode is “score”, or
(n_parameters, n_parameters) in any other case.

covariance
[ndarray or None] The covariance of the estimated Fisher information matrix. This object
has four indices, cov_(ij)(i’j’), ordered asiji’ j’. It has shape (n_parameters, n_parameters,
n_parameters, n_parameters).

13.4. madminer.ml.ensemble module 91



MadMiner Documentation, Release 0.9.5

evaluate_log_likelihood (estimator_weights=None, calculate_covariance=False, **kwargs)
Estimates the log likelihood from each estimator and returns the ensemble mean (and, if calcu-
late_covariance is True, the covariance between them).

Parameters

estimator_weights
[ndarray or None, optional] Weights for each estimator in the ensemble. If None, all esti-
mators have an equal vote. Default value: None.

calculate_covariance
[bool, optional] If True, the covariance between the different estimators is calculated. De-
fault value: False.

kwargs
Arguments for the evaluation. See the documentation of the relevant Estimator class.

Returns

log_likelihood
[ndarray] Mean prediction for the log likelihood.

covariance
[ndarray or None] If calculate_covariance is True, the covariance matrix between the esti-
mators. Otherwise None.

evaluate_log_likelihood_ratio(estimator_weights=None, calculate_covariance=False, **kwargs)
Estimates the log likelihood ratio from each estimator and returns the ensemble mean (and, if calcu-
late_covariance is True, the covariance between them).

Parameters

estimator_weights
[ndarray or None, optional] Weights for each estimator in the ensemble. If None, all esti-
mators have an equal vote. Default value: None.

calculate_covariance
[bool, optional] If True, the covariance between the different estimators is calculated. De-
fault value: False.

kwargs
Arguments for the evaluation. See the documentation of the relevant Estimator class.

Returns

log_likelihood_ratio
[ndarray] Mean prediction for the log likelihood ratio.

covariance
[ndarray or None] If calculate_covariance is True, the covariance matrix between the esti-
mators. Otherwise None.

evaluate_score (estimator_weights=None, calculate_covariance=False, **kwargs)
Estimates the score from each estimator and returns the ensemble mean (and, if calculate_covariance is
True, the covariance between them).
Parameters

estimator_weights
[ndarray or None, optional] Weights for each estimator in the ensemble. If None, all esti-
mators have an equal vote. Default value: None.

92 Chapter 13. madminer.ml package



MadMiner Documentation, Release 0.9.5

calculate_covariance
[bool, optional] If True, the covariance between the different estimators is calculated. De-
fault value: False.

kwargs
Arguments for the evaluation. See the documentation of the relevant Estimator class.

Returns

log_likelihood_ratio
[ndarray] Mean prediction for the log likelihood ratio.

covariance
[ndarray or None] If calculate_covariance is True, the covariance matrix between the esti-
mators. Otherwise None.

load (folder)
Loads the estimator ensemble from a folder.

Parameters

folder
[str] Path to the folder.

Returns
None

save (folder, save_model=False)

Saves the estimator ensemble to a folder.
Parameters

folder
[str] Path to the folder.

save_model
[bool, optional] If True, the whole model is saved in addition to the state dict. This is not
necessary for loading it again with Ensemble.load(), but can be useful for debugging, for
instance to plot the computational graph.

Returns
None

train_all (**kwargs)

Trains all estimators. See Estimator.train().
Parameters

kwargs
[dict] Parameters for Estimator.train(). If a value in this dict is a list, it has to have length
n_estimators and contain one value of this parameter for each of the estimators. Otherwise
the value is used as parameter for the training of all the estimators.

Returns

result_list: list of ndarray
List of training and validation losses from estimator training

train_one (i, **kwargs)

Trains an individual estimator. See Estimator.train().

Parameters

13.4. madminer.ml.ensemble module 93



MadMiner Documentation, Release 0.9.5

[int] The index 0 <= i < n_estimators of the estimator to be trained.

kwargs
[dict] Parameters for Estimator.train().

Returns

result: ndarray
Training and validation losses from estimator training

13.5 madminer.ml.likelihood module

class madminer.ml.likelihood.LikelihoodEstimator (features=None, n_components=I, n_mades=35,
n_hidden=(100,), activation="tanh',
batch_norm=None)

Bases: ConditionalEstimator

A neural estimator of the density or likelihood evaluated at a reference hypothesis as a function
of the observation X.

Parameters

features
[list of int or None, optional] Indices of observables (features) that are used as input to the
neural networks. If None, all observables are used. Default value: None.

n_components
[int, optional] The number of Gaussian base components in a MADE MoG. If 1, a plain
MADE is used. Default value: 1.

n_mades
[int, optional] The number of MADE layers. Default value: 3.

n_hidden
[tuple of int, optional] Units in each hidden layer in the neural networks. If method is ‘nde’
or ‘scandal’, this refers to the setup of each individual MADE layer. Default value: (100,).

activation
[{‘tank’, ‘sigmoid’, ‘relu’}, optional] Activation function. Default value: ‘tanh’.

batch_norm
[None or float, optional] If not None, batch normalization is used, where this value sets the
alpha parameter in the calculation of the running average of the mean and variance. Default
value: None.

94 Chapter 13. madminer.ml package



MadMiner Documentation, Release 0.9.5

Methods
calculate_fisher_information(*args, Calculates the expected Fisher information matrix
**kwargs) based on the kinematic information in a given number
of events.
evaluate_log_likelihood(x, theta[, ...]) Evaluates the log likelihood as a function of the ob-

servation x and the parameter point theta.

evaluate_log_likelihood_ratio(x, theta0,...)  Evaluates the log likelihood ratio as a function of the
observation X, the numerator parameter point theta0,
and the denominator parameter point thetal.

evaluate_score(*args, **kwargs) Score estimation.
load(filename) Loads a trained model from files.
save(filename[, save_model]) Saves the trained model to four files: a JSON file

with the settings, a pickled pyTorch state dict file, and
numpy files for the mean and variance of the inputs
(used for input scaling).

train(method, x, theta[, t_xz, x_val, ...]) Trains the network.

evaluate
initialize_input_transform
initialize_parameter_transform

calculate_fisher_information(*args, **kwargs)

Calculates the expected Fisher information matrix based on the kinematic information in a given number
of events.

Parameters

X
[str or ndarray] Sample of observations, or path to numpy file with observations. Note that
this sample has to be sampled from the reference parameter where the score is estimated
with the SALLY / SALLINO estimator.

theta: None or ndarray
Numerator parameter point, or filename of a pickled numpy array. Has no effect for
ScoreEstimator.

weights
[None or ndarray, optional] Weights for the observations. If None, all events are taken to
have equal weight. Default value: None.

n_events
[float, optional] Expected number of events for which the kinematic Fisher information
should be calculated. Default value: 1.

sum_events
[bool, optional] If True, the expected Fisher information summed over the events x is cal-
culated. If False, the per-event Fisher information for each event is returned. Default value:
True.

Returns

fisher_information
[ndarray] Expected kinematic Fisher information matrix with shape (n_events,
n_parameters, n_parameters) if sum_events is False or (n_parameters, n_parameters) if
sum_events is True.

13.5. madminer.ml.likelihood module 95



MadMiner Documentation, Release 0.9.5

evaluate(*args, **kwargs)

evaluate_log_likelihood (x, theta, test_all_combinations=True, evaluate_score=False)

Evaluates the log likelihood as a function of the observation x and the parameter point theta.
Parameters

X
[ndarray or str] Sample of observations, or path to numpy file with observations.

theta
[ndarray or str] Parameter points, or path to numpy file with parameter points.

test_all_combinations
[bool, optional] If method is not ‘sally’ and not ‘sallino’: If False, the number of samples
in the observable and theta files has to match, and the likelihood ratio is evaluated only
for the combinations r(x_i | thetaO_i, thetal _i). 1f True, r(x_i | thetaO_j, thetal_j) for all
pairwise combinations i, j are evaluated. Default value: True.

evaluate_score
[bool, optional] If method is not ‘sally’ and not ‘sallino’, this sets whether in addition to
the likelihood ratio the score is evaluated. Default value: False.

Returns

log_likelihood
[ndarray] The estimated log likelihood. If test_all_combinations is True, the result has
shape (n_thetas, n_x). Otherwise, it has shape (n_samples, ).

score
[ndarray or None] None if evaluate_score is False. Otherwise the derived estimated score at
theta. If test_all_combinations is True, the result has shape (n_thetas, n_x, n_parameters).
Otherwise, it has shape (n_samples, n_parameters).

evaluate_log_likelihood_ratio(x, thetaO, thetal, test_all_combinations, evaluate_score=False)

Evaluates the log likelihood ratio as a function of the observation x, the numerator parameter point theta0,
and the denominator parameter point thetal.

Parameters

X
[ndarray or str] Sample of observations, or path to numpy file with observations.

theta0
[ndarray or str] Numerator parameters, or path to numpy file.

thetal
[ndarray or str] Denominator parameters, or path to numpy file.

test_all_combinations
[bool, optional] If method is not ‘sally’ and not ‘sallino’: If False, the number of samples
in the observable and theta files has to match, and the likelihood ratio is evaluated only
for the combinations r(x_i | thetaO_i, thetal _i). If True, r(x_i | thetaO_j, thetal_j) for all
pairwise combinations i, j are evaluated. Default value: True.

evaluate_score
[bool, optional] If method is not ‘sally’ and not ‘sallino’, this sets whether in addition to
the likelihood ratio the score is evaluated. Default value: False.

Returns

96 Chapter 13. madminer.ml package



MadMiner Documentation, Release 0.9.5

log_likelihood
[ndarray] The estimated log likelihood. If test_all_combinations is True, the result has
shape (n_thetas, n_x). Otherwise, it has shape (n_samples, ).

score
[ndarray or None] None if evaluate_score is False. Otherwise the derived estimated score at
theta. If test_all_combinations is True, the result has shape (n_thetas, n_x, n_parameters).
Otherwise, it has shape (n_samples, n_parameters).

evaluate_score(*args, **kwargs)

Score estimation. Signature depends on the type of estimator. The only returned value is the score with
shape (n_x).

train(method, x, theta, t_xz=None, x_val=None, theta_val=None, t_xz_val=None, alpha=1.0,
optimizer="amsgrad', n_epochs=50, batch_size=128, initial_Ir=0.001, final_lr=0.0001,
nesterov_momentum=None, validation_split=0.25, early_stopping=True, scale_inputs=True,
shuffle_labels=False, limit_samplesize=None, memmap=False, verbose='some’,
scale_parameters=True, n_workers=8, clip_gradient=None, early_stopping_patience=None)

Trains the network.
Parameters

method
[str] The inference method used for training. Allowed values are ‘nde’ and ‘scandal’.

X
[ndarray or str] Observations, or filename of a pickled numpy array.

theta
[ndarray or str] Numerator parameter point, or filename of a pickled numpy array.

t_xz
[ndarray or str or None, optional] Joint scores at theta, or filename of a pickled numpy
array. Default value: None.

x_val
[ndarray or str or None, optional] Validation observations, or filename of a pickled numpy
array. If None and validation_split > 0, validation data will be randomly selected from the
training data. Default value: None.

theta_val
[ndarray or str or None, optional] Validation numerator parameter points, or filename of a
pickled numpy array. If None and validation_split > 0, validation data will be randomly
selected from the training data. Default value: None.

t_xz_val
[ndarray or str or None, optional] Validation joint scores at theta, or filename of a pickled
numpy array. If None and validation_split > 0, validation data will be randomly selected
from the training data. Default value: None.

alpha
[float, optional] Hyperparameter weighting the score error in the loss function of the ‘al-
ices’, ‘rascal’, and ‘cascal’ methods. Default value: 1.

optimizer
[{“adam”, “amsgrad”, “sgd”}, optional] Optimization algorithm. Default value: “ams-
grad”.

n_epochs
[int, optional] Number of epochs. Default value: 50.

13.5. madminer.ml.likelihood module 97



MadMiner Documentation, Release 0.9.5

batch_size
[int, optional] Batch size. Default value: 128.

initial_Ir
[float, optional] Learning rate during the first epoch, after which it exponentially decays to
final_Ir. Default value: 0.001.

final_Ir
[float, optional] Learning rate during the last epoch. Default value: 0.0001.

nesterov_momentum
[float or None, optional] If trainer is “sgd”, sets the Nesterov momentum. Default value:
None.

validation_split
[float or None, optional] Fraction of samples used for validation and early stopping (if
early_stopping is True). If None, the entire sample is used for training and early stopping
is deactivated. Default value: 0.25.

early_stopping
[bool, optional] Activates early stopping based on the validation loss (only if valida-
tion_split is not None). Default value: True.

scale_inputs
[bool, optional] Scale the observables to zero mean and unit variance. Default value: True.

shuffle_labels
[bool, optional] If True, the labels (y, r_xz, t_xz) are shuffled, while the observations (x)
remain in their normal order. This serves as a closure test, in particular as cross-check
against overfitting: an estimator trained with shuffle_labels=True should predict to likeli-
hood ratios around 1 and scores around 0.

limit_samplesize
[int or None, optional] If not None, only this number of samples (events) is used to train
the estimator. Default value: None.

memmap
[bool, optional.] If True, training files larger than 1 GB will not be loaded into memory at
once. Default value: False.

verbose
[{“all”, “many”, “some”, “few”, “none}, optional] Determines verbosity of training. De-
fault value: “some”.

scale_parameters
[bool, optional] Whether parameters are rescaled to mean zero and unit variance before
going into the neural network. Default value: True.

Returns

result: ndarray
Training and validation losses from FlowTrainer.train

98 Chapter 13. madminer.ml package



MadMiner Documentation, Release 0.9.5

13.6 madminer.ml.lookup module

madminer.ml.lookup.load_estimator (filename)

13.7 madminer.ml.morphing_aware module

class madminer.ml.morphing_aware.MorphingAwareRatioEstimator (morphing_setup_filename=None,

Bases: ParameterizedRatioEstimator

Methods

optimize_morphing_basis=False,
features=None, n_hidden=(100,),
activation="tanh’,
dropout_prob=0.0)

calculate_fisher_information(x][, theta, ...])

Calculates the expected Fisher information matrix
based on the kinematic information in a given number
of events.

evaluate_log_likelihood(*args, **kwargs)

Log likelihood estimation.

evaluate_log_likelihood_ratio(x, theta[, ...])

Evaluates the log likelihood ratio for given observa-
tions x between the given parameter point theta and
the reference hypothesis.

evaluate_log_likelihood_ratio_torch(x,
theta)

Evaluates the log likelihood ratio for given observa-
tions x between the given parameter point theta and
the reference hypothesis.

evaluate_score(x, theta[, nuisance_mode])

Evaluates the scores for given observations x between
at a given parameter point theta.

load(filename)

Loads a trained model from files.

save(filename[, save_model])

Saves the trained model to four files: a JSON file
with the settings, a pickled pyTorch state dict file, and
numpy files for the mean and variance of the inputs
(used for input scaling).

train(*args, **kwargs)

Trains the network.

evaluate

initialize_input_transform

initialize_parameter_transform

train(*args, **kwargs)

Trains the network.
Parameters

method

[str] The inference method used for training. Allowed values are ‘alice’, ‘alices’, ‘carl’,

‘cascal’, ‘rascal’, and ‘rolr’.

X

[ndarray or str] Observations, or filename of a pickled numpy array.

13.6. madminer.ml.lookup module

99



MadMiner Documentation, Release 0.9.5

y
[ndarray or str] Class labels (0 = numerator, 1 = denominator), or filename of a pickled

numpy array.

theta
[ndarray or str] Numerator parameter point, or filename of a pickled numpy array.

r_Xz
[ndarray or str or None, optional] Joint likelihood ratio, or filename of a pickled numpy
array. Default value: None.

t_xz
[ndarray or str or None, optional] Joint scores at theta, or filename of a pickled numpy
array. Default value: None.

x_val
[ndarray or str or None, optional] Validation observations, or filename of a pickled numpy
array. If None and validation_split > 0, validation data will be randomly selected from the
training data. Default value: None.

y_val
[ndarray or str or None, optional] Validation labels (0 = numerator, 1 = denominator), or
filename of a pickled numpy array. If None and validation_split > 0, validation data will
be randomly selected from the training data. Default value: None.

theta_val
[ndarray or str or None, optional] Validation numerator parameter points, or filename of a
pickled numpy array. If None and validation_split > 0, validation data will be randomly
selected from the training data. Default value: None.

r_xz_val
[ndarray or str or None, optional] Validation joint likelihood ratio, or filename of a pickled
numpy array. If None and validation_split > 0, validation data will be randomly selected
from the training data. Default value: None.

t_xz_val
[ndarray or str or None, optional] Validation joint scores at theta, or filename of a pickled
numpy array. If None and validation_split > 0, validation data will be randomly selected
from the training data. Default value: None.

alpha
[float, optional] Hyperparameter weighting the score error in the loss function of the ‘al-
ices’, ‘rascal’, and ‘cascal’ methods. Default value: 1.

optimizer
[{“adam”, “amsgrad”, “sgd”}, optional] Optimization algorithm. Default value: “ams-
grad”.

n_epochs
[int, optional] Number of epochs. Default value: 50.

batch_size
[int, optional] Batch size. Default value: 128.

initial_Ir
[float, optional] Learning rate during the first epoch, after which it exponentially decays to
final_Ir. Default value: 0.001.

final_Ir
[float, optional] Learning rate during the last epoch. Default value: 0.0001.

100 Chapter 13. madminer.ml package



MadMiner Documentation, Release 0.9.5

nesterov_momentum
[float or None, optional] If trainer is “sgd”, sets the Nesterov momentum. Default value:
None.

validation_split
[float or None, optional] Fraction of samples used for validation and early stopping (if
early_stopping is True). If None, the entire sample is used for training and early stopping
is deactivated. Default value: 0.25.

early_stopping
[bool, optional] Activates early stopping based on the validation loss (only if valida-
tion_split is not None). Default value: True.

scale_inputs
[bool, optional] Scale the observables to zero mean and unit variance. Default value: True.

shuffle_labels
[bool, optional] If True, the labels (y, r_xz, t_xz) are shuffled, while the observations (x)
remain in their normal order. This serves as a closure test, in particular as cross-check
against overfitting: an estimator trained with shuffle_labels=True should predict to likeli-
hood ratios around 1 and scores around 0.

limit_samplesize
[int or None, optional] If not None, only this number of samples (events) is used to train
the estimator. Default value: None.

memmap
[bool, optional.] If True, training files larger than 1 GB will not be loaded into memory at
once. Default value: False.

verbose
[{“all”, “many”, “some”, “few”, “none}, optional] Determines verbosity of training. De-
fault value: “some”.

scale_parameters
[bool, optional] Whether parameters are rescaled to mean zero and unit variance before
going into the neural network. Default value: True.

Returns

result: ndarray
Training and validation losses from SingleParameterizedRatioTrainer.train or DoublePa-
rameterizedRatioTrainer.train for example

class madminer.ml.morphing_aware.QuadraticMorphingAwareRatioEstimator (features=None,
n_hidden=(100,),
activation="tanh',
dropout_prob=0.0)

Bases: ParameterizedRatioEstimator
Specific morphing-aware likelihood ratio estimator for a single parameter and thetal = 0.

Uses the quadratic parameterization of 2007.10356: r_hat(x, theta) = (1 + theta A(x))"2 + (theta B(x))"2.

13.7. madminer.ml.morphing_aware module 101



MadMiner Documentation, Release 0.9.5

Methods

calculate_fisher_information(x[, theta, ...])

Calculates the expected Fisher information matrix
based on the kinematic information in a given number
of events.

evaluate_log_likelihood(*args, **kwargs)

Log likelihood estimation.

evaluate_log_likelihood_ratio(x, thetal, ...])

Evaluates the log likelihood ratio for given observa-
tions x between the given parameter point theta and
the reference hypothesis.

evaluate_log_likelihood_ratio_torch(x,
theta)

Evaluates the log likelihood ratio for given observa-
tions x between the given parameter point theta and
the reference hypothesis.

evaluate_score(x, theta[, nuisance_mode])

Evaluates the scores for given observations x between
at a given parameter point theta.

load(filename)

Loads a trained model from files.

save(filename[, save_model])

Saves the trained model to four files: a JSON file
with the settings, a pickled pyTorch state dict file, and
numpy files for the mean and variance of the inputs
(used for input scaling).

train(*args, **kwargs)

Trains the network.

evaluate

initialize_input_transform

initialize_parameter_transform

train(*args, **kwargs)
Trains the network.

Parameters

method

[str] The inference method used for training. Allowed values are ‘alice’, ‘alices’, ‘carl’,

‘cascal’, ‘rascal’, and ‘rolr’.

X

[ndarray or str] Observations, or filename of a pickled numpy array.

y

[ndarray or str] Class labels (0 = numerator, 1 = denominator), or filename of a pickled

numpy array.

theta

[ndarray or str] Numerator parameter point, or filename of a pickled numpy array.

r_xz

[ndarray or str or None, optional] Joint likelihood ratio, or filename of a pickled numpy

array. Default value: None.

t_xz

[ndarray or str or None, optional] Joint scores at theta, or filename of a pickled numpy

array. Default value: None.

x_val

[ndarray or str or None, optional] Validation observations, or filename of a pickled numpy
array. If None and validation_split > 0, validation data will be randomly selected from the

training data. Default value: None.

102

Chapter 13. madminer.ml package



MadMiner Documentation, Release 0.9.5

y_val
[ndarray or str or None, optional] Validation labels (0 = numerator, 1 = denominator), or
filename of a pickled numpy array. If None and validation_split > 0, validation data will
be randomly selected from the training data. Default value: None.

theta_val
[ndarray or str or None, optional] Validation numerator parameter points, or filename of a
pickled numpy array. If None and validation_split > 0, validation data will be randomly
selected from the training data. Default value: None.

r_xz_val
[ndarray or str or None, optional] Validation joint likelihood ratio, or filename of a pickled
numpy array. If None and validation_split > 0, validation data will be randomly selected
from the training data. Default value: None.

t_xz_val
[ndarray or str or None, optional] Validation joint scores at theta, or filename of a pickled
numpy array. If None and validation_split > 0, validation data will be randomly selected
from the training data. Default value: None.

alpha
[float, optional] Hyperparameter weighting the score error in the loss function of the ‘al-
ices’, ‘rascal’, and ‘cascal’ methods. Default value: 1.

optimizer
[{“adam”, “amsgrad”, “sgd”}, optional] Optimization algorithm. Default value: “ams-
grad”.

n_epochs
[int, optional] Number of epochs. Default value: 50.

batch_size
[int, optional] Batch size. Default value: 128.

initial_Ir
[float, optional] Learning rate during the first epoch, after which it exponentially decays to
final_Ir. Default value: 0.001.

final_Ir
[float, optional] Learning rate during the last epoch. Default value: 0.0001.

nesterov_momentum
[float or None, optional] If trainer is “sgd”, sets the Nesterov momentum. Default value:
None.

validation_split
[float or None, optional] Fraction of samples used for validation and early stopping (if
early_stopping is True). If None, the entire sample is used for training and early stopping
is deactivated. Default value: 0.25.

early_stopping
[bool, optional] Activates early stopping based on the validation loss (only if valida-
tion_split is not None). Default value: True.

scale_inputs
[bool, optional] Scale the observables to zero mean and unit variance. Default value: True.

shuffle_labels
[bool, optional] If True, the labels (y, r_xz, t_xz) are shuffled, while the observations (x)
remain in their normal order. This serves as a closure test, in particular as cross-check

13.7.

madminer.ml.morphing_aware module

103



MadMiner Documentation, Release 0.9.5

against overfitting: an estimator trained with shuffle_labels=True should predict to likeli-
hood ratios around 1 and scores around 0.

limit_samplesize
[int or None, optional] If not None, only this number of samples (events) is used to train
the estimator. Default value: None.

memmap
[bool, optional.] If True, training files larger than 1 GB will not be loaded into memory at
once. Default value: False.

verbose
[{*“all”, “many”, “some”, “few”, “none}, optional] Determines verbosity of training. De-
fault value: “some”.

scale_parameters
[bool, optional] Whether parameters are rescaled to mean zero and unit variance before
going into the neural network. Default value: True.

Returns

result: ndarray
Training and validation losses from SingleParameterizedRatioTrainer.train or DoublePa-
rameterizedRatioTrainer.train for example

13.8 madminer.ml.parameterized_ratio module

class madminer.ml.parameterized_ratio.ParameterizedRatioEstimator (features=None,
n_hidden=(100,),
activation="tanh’,
dropout_prob=0.0)

Bases: ConditionalEstimator
A neural estimator of the likelihood ratio as a function of the observation x as well as the numerator hypothesis

theta. The reference (denominator) hypothesis is kept fixed at some reference value and NOT modeled by the
network.

104 Chapter 13. madminer.ml package



MadMiner Documentation, Release 0.9.5

Methods
calculate_fisher_information(x[, theta, ...]) Calculates the expected Fisher information matrix
based on the kinematic information in a given number
of events.
evaluate_log_likelihood(*args, **kwargs) Log likelihood estimation.

evaluate_log_likelihood_ratio(x, theta[,...]) Evaluates the log likelihood ratio for given observa-
tions x between the given parameter point theta and
the reference hypothesis.

evaluate_log_likelihood_ratio_torch(x, Evaluates the log likelihood ratio for given observa-

theta) tions x between the given parameter point theta and
the reference hypothesis.

evaluate_score(x, theta[, nuisance_mode]) Evaluates the scores for given observations x between
at a given parameter point theta.

load(filename) Loads a trained model from files.

save(filename[, save_model]) Saves the trained model to four files: a JSON file

with the settings, a pickled pyTorch state dict file, and
numpy files for the mean and variance of the inputs
(used for input scaling).

train(method, x, y, theta[, r_xz, t_xz, ...]) Trains the network.

evaluate
initialize_input_transform
initialize_parameter_transform

evaluate(*args, **kwargs)

evaluate_log_likelihood(*args, **kwargs)
Log likelihood estimation. Signature depends on the type of estimator. The first returned value is the log
likelihood with shape (n_thetas, n_x).

evaluate_log_likelihood_ratio(x, theta, test_all_combinations=True, evaluate_score=False)
Evaluates the log likelihood ratio for given observations x between the given parameter point theta and the
reference hypothesis.

Parameters

X
[str or ndarray] Observations or filename of a pickled numpy array.

theta
[ndarray or str] Parameter points or filename of a pickled numpy array.

test_all_combinations
[bool, optional] If False, the number of samples in the observable and theta files has to
match, and the likelihood ratio is evaluated only for the combinations r(x_i | thetaO_i,
thetal _i). If True, r(x_i | thetaO_j, thetal_j) for all pairwise combinations i, j are eval-
uated. Default value: True.

evaluate_score
[bool, optional] Sets whether in addition to the likelihood ratio the score is evaluated. De-
fault value: False.

Returns

13.8. madminer.ml.parameterized_ratio module 105



MadMiner Documentation, Release 0.9.5

log_likelihood_ratio
[ndarray] The estimated log likelihood ratio. If test_all_combinations is True, the result

has shape (n_thetas, n_x). Otherwise, it has shape (n_samples, ).

score
[ndarray or None] None if evaluate_score is False. Otherwise the derived estimated score at

theta0. If test_all_combinations is True, the result has shape (n_thetas, n_x, n_parameters).
Otherwise, it has shape (n_samples, n_parameters).

evaluate_log_likelihood_ratio_torch(x, theta, test_all_combinations=True)
Evaluates the log likelihood ratio for given observations x between the given parameter point theta and the
reference hypothesis.

Parameters

X
[torch.tensor] Observations.

theta
[torch.tensor] Parameter points.

test_all_combinations
[bool, optional] If False, the number of samples in the observable and theta files has to

match, and the likelihood ratio is evaluated only for the combinations r(x_i | theta0O_i,
thetal _i). If True, r(x_i | thetaO_j, thetal_j) for all pairwise combinations i, j are eval-
uated. Default value: True.

Returns
log_likelihood_ratio
[torch.tensor] The estimated log likelihood ratio. If test_all_combinations is True, the result
has shape (n_thetas, n_x). Otherwise, it has shape (n_samples, ).

evaluate_score(x, theta, nuisance_mode="keep")
Evaluates the scores for given observations x between at a given parameter point theta.

Parameters

X
[str or ndarray] Observations or filename of a pickled numpy array.

theta
[ndarray or str] Parameter points or filename of a pickled numpy array.

nuisance_mode
[{“auto”, “keep”, “profile”, “project”}] Decides how nuisance parameters are treated. If

s

nuisance_mode is “keep”, the returned score is always (n+k)-dimensional.

Returns

score
[ndarray or None] The estimated score at theta. If test_all_combinations is True, the

result has shape (n_thetas, n_x, n_parameters). Otherwise, it has shape (n_samples,

n_parameters).

train(method, x, y, theta, r_xz=None, t_xz=None, x_val=None, y_val=None, theta_val=None,
r_xz_val=None, t_xz_val=None, alpha=1.0, optimizer="amsgrad’, n_epochs=>50, batch_size=128,
initial_lr=0.001, final_Ilr=0.0001, nesterov_momentum=None, validation_split=0.25,
early_stopping=True, scale_inputs=True, shuffle_labels=False, limit_samplesize=None,
memmap=False, verbose="some', scale_parameters=True, n_workers=8, clip_gradient=None,

early_stopping_patience=None)

106 Chapter 13. madminer.ml package



MadMiner Documentation, Release 0.9.5

Trains the network.

Parameters

method
[str] The inference method used for training. Allowed values are ‘alice’, ‘alices’, ‘carl’,
‘cascal’, ‘rascal’, and ‘rolr’.

X
[ndarray or str] Observations, or filename of a pickled numpy array.

y
[ndarray or str] Class labels (0 = numerator, 1 = denominator), or filename of a pickled

numpy array.

theta
[ndarray or str] Numerator parameter point, or filename of a pickled numpy array.

r_XZ
[ndarray or str or None, optional] Joint likelihood ratio, or filename of a pickled numpy
array. Default value: None.

t_xz
[ndarray or str or None, optional] Joint scores at theta, or filename of a pickled numpy
array. Default value: None.

x_val
[ndarray or str or None, optional] Validation observations, or filename of a pickled numpy
array. If None and validation_split > 0, validation data will be randomly selected from the
training data. Default value: None.

y_val
[ndarray or str or None, optional] Validation labels (0 = numerator, 1 = denominator), or
filename of a pickled numpy array. If None and validation_split > 0, validation data will
be randomly selected from the training data. Default value: None.

theta_val
[ndarray or str or None, optional] Validation numerator parameter points, or filename of a
pickled numpy array. If None and validation_split > 0, validation data will be randomly
selected from the training data. Default value: None.

r_xz_val
[ndarray or str or None, optional] Validation joint likelihood ratio, or filename of a pickled
numpy array. If None and validation_split > 0, validation data will be randomly selected
from the training data. Default value: None.

t xz val
[ndarray or str or None, optional] Validation joint scores at theta, or filename of a pickled
numpy array. If None and validation_split > 0, validation data will be randomly selected
from the training data. Default value: None.

alpha
[float, optional] Hyperparameter weighting the score error in the loss function of the ‘al-
ices’, ‘rascal’, and ‘cascal’ methods. Default value: 1.

optimizer
[{“adam”, “amsgrad”, “sgd”}, optional] Optimization algorithm. Default value: “ams-
grad”.

13.8.

madminer.ml.parameterized_ratio module

107



MadMiner Documentation, Release 0.9.5

n_epochs
[int, optional] Number of epochs. Default value: 50.

batch_size
[int, optional] Batch size. Default value: 128.

initial_Ir
[float, optional] Learning rate during the first epoch, after which it exponentially decays to
final_Ir. Default value: 0.001.

final_Ir
[float, optional] Learning rate during the last epoch. Default value: 0.0001.

nesterov_momentum
[float or None, optional] If trainer is “sgd”, sets the Nesterov momentum. Default value:
None.

validation_split
[float or None, optional] Fraction of samples used for validation and early stopping (if
early_stopping is True). If None, the entire sample is used for training and early stopping
is deactivated. Default value: 0.25.

early_stopping
[bool, optional] Activates early stopping based on the validation loss (only if valida-
tion_split is not None). Default value: True.

scale_inputs
[bool, optional] Scale the observables to zero mean and unit variance. Default value: True.

shuffle_labels
[bool, optional] If True, the labels (y, r_xz, t_xz) are shuffled, while the observations (x)
remain in their normal order. This serves as a closure test, in particular as cross-check
against overfitting: an estimator trained with shuffle_labels=True should predict to likeli-
hood ratios around 1 and scores around 0.

limit_samplesize
[int or None, optional] If not None, only this number of samples (events) is used to train
the estimator. Default value: None.

memmap
[bool, optional.] If True, training files larger than 1 GB will not be loaded into memory at
once. Default value: False.

verbose
[{“all”, “many”, “some”, “few”, “none}, optional] Determines verbosity of training. De-
fault value: “some”.

scale_parameters
[bool, optional] Whether parameters are rescaled to mean zero and unit variance before
going into the neural network. Default value: True.

Returns

result: ndarray
Training and validation losses from SingleParameterizedRatioTrainer.train or DoublePa-
rameterizedRatioTrainer.train for example

108 Chapter 13. madminer.ml package



MadMiner Documentation, Release 0.9.5

13.9 madminer.ml.score module

class madminer.ml.score.ScoreEstimator (featrures=None, n_hidden=(100,), activation="tanh’,
dropout_prob=0.0)

Bases: Estimator

A neural estimator of the score evaluated at a fixed reference hypothesis as a function of the
observation x.

Parameters

features
[list of int or None, optional] Indices of observables (features) that are used as input to the
neural networks. If None, all observables are used. Default value: None.

n_hidden
[tuple of int, optional] Units in each hidden layer in the neural networks. If method is ‘nde’
or ‘scandal’, this refers to the setup of each individual MADE layer. Default value: (100,).

activation
[{‘tanh’, ‘sigmoid’, ‘relu’}, optional] Activation function. Default value: ‘tanh’.

Methods

calculate_fisher_information(x|[, theta, ...]) Calculates the expected Fisher information matrix
based on the kinematic information in a given number
of events.

evaluate_log_likelihood(*args, **kwargs) Log likelihood estimation.

evaluate_log_likelihood_ratio(*args, Log likelihood ratio estimation.

**kwargs)

evaluate_score(X[, theta, nuisance_mode]) Evaluates the score.

load(filename) Loads a trained model from files.

save(filename[, save_model]) Saves the trained model to four files: a JSON file
with the settings, a pickled pyTorch state dict file, and
numpy files for the mean and variance of the inputs
(used for input scaling).

set_nuisance(fisher_information, ...) Prepares the calculation of profiled scores, see https:
/larxiv.org/pdf/1903.01473.pdf.

train(method, x, t_xz[, x_val, t_xz_val, ...]) Trains the network.

evaluate
initialize_input_transform

evaluate(*args, **kwargs)

evaluate_log_likelihood(*args, **kwargs)
Log likelihood estimation. Signature depends on the type of estimator. The first returned value is the log
likelihood with shape (n_thetas, n_x).

evaluate_log_likelihood_ratio(*args, **kwargs)

Log likelihood ratio estimation. Signature depends on the type of estimator. The first returned value is the
log likelihood ratio with shape (n_thetas, n_x) or (n_x).

13.9. madminer.ml.score module 109


https://arxiv.org/pdf/1903.01473.pdf
https://arxiv.org/pdf/1903.01473.pdf

MadMiner Documentation, Release 0.9.5

evaluate_score (x, theta=None, nuisance_mode="auto")
Evaluates the score.
Parameters

X
[str or ndarray] Observations, or filename of a pickled numpy array.

theta: None or ndarray, optional
Has no effect for ScoreEstimator. Introduced just for conformity with other Estimators.

nuisance_mode

[{“auto”, “keep”, “profile”, “project”}] Decides how nuisance parameters are treated. If
nuisance_mode is “auto”, the returned score is the (n+k)- dimensional score in the space
of n parameters of interest and k nuisance parameters if set_profiling has not been called,
and the n-dimensional profiled score in the space of the parameters of interest if it has been
called. For “keep”, the returned score is always (n+k)-dimensional. For “profile”, it is the
n-dimensional profiled score. For “project”, it is the n-dimensional projected score, i.e.
ignoring the nuisance parameters.

Returns

score
[ndarray] Estimated score with shape (n_observations, n_parameters).

load (filename)
Loads a trained model from files.

Parameters

filename
[str] Path to the files. ‘_settings.json’ and ‘_state_dict.pl’ will be added.

Returns
None

save (filename, save_model=False)

Saves the trained model to four files: a JSON file with the settings, a pickled pyTorch state dict file, and
numpy files for the mean and variance of the inputs (used for input scaling).

Parameters

filename
[str] Path to the files. ‘_settings.json’ and ‘_state_dict.pl’ will be added.

save_model
[bool, optional] If True, the whole model is saved in addition to the state dict. This is not
necessary for loading it again with Estimator.load(), but can be useful for debugging, for
instance to plot the computational graph.

Returns
None

set_nuisance (fisher_information, parameters_of _interest)
Prepares the calculation of profiled scores, see https://arxiv.org/pdf/1903.01473.pdf.

Parameters

fisher_information
[ndarray] Fisher information with shape (n_parameters, n_parameters).

110 Chapter 13. madminer.ml package


https://arxiv.org/pdf/1903.01473.pdf

MadMiner Documentation, Release 0.9.5

parameters_of_interest
[list of int] List of int, with 0 <= remaining_components[i] < n_parameters. Denotes which
parameters are kept in the profiling, and their new order.

Returns
None

train(method, x, t_xz, x_val=None, t_xz_val=None, optimizer="amsgrad’, n_epochs=50, batch_size=128,
initial_lr=0.001, final_Ilr=0.0001, nesterov_momentum=None, validation_split=0.25,
early_stopping=True, scale_inputs=True, shuffle_labels=False, limit_samplesize=None,
memmap=False, verbose="some', n_workers=8, clip_gradient=None, early_stopping_patience=None)

Trains the network.
Parameters

method
[str] The inference method used for training. Currently values are ‘sally’ and ‘sallino’, but
at the training stage they are identical. So right now it doesn’t matter which one you use.

X
[ndarray or str] Path to an unweighted sample of observations, as saved by the mad-
miner.sampling.SampleAugmenter functions. Required for all inference methods.

t_xz
[ndarray or str] Joint scores at the reference hypothesis, or filename of a pickled numpy
array.

optimizer
[{“adam”, “amsgrad”, “sgd”}, optional] Optimization algorithm. Default value: “ams-
grad”.

n_epochs
[int, optional] Number of epochs. Default value: 50.

batch_size
[int, optional] Batch size. Default value: 128.

initial_Ir
[float, optional] Learning rate during the first epoch, after which it exponentially decays to
final_Ir. Default value: 0.001.

final_Ir
[float, optional] Learning rate during the last epoch. Default value: 0.0001.

nesterov_momentum
[float or None, optional] If trainer is “sgd”, sets the Nesterov momentum. Default value:
None.

validation_split
[float or None, optional] Fraction of samples used for validation and early stopping (if
early_stopping is True). If None, the entire sample is used for training and early stopping
is deactivated. Default value: 0.25.

early_stopping
[bool, optional] Activates early stopping based on the validation loss (only if valida-
tion_split is not None). Default value: True.

scale_inputs
[bool, optional] Scale the observables to zero mean and unit variance. Default value: True.

13.9. madminer.ml.score module 111



MadMiner Documentation, Release 0.9.5

shuffle_labels
[bool, optional] If True, the labels (y, r_xz, t_xz) are shuffled, while the observations (x)
remain in their normal order. This serves as a closure test, in particular as cross-check
against overfitting: an estimator trained with shuffle_labels=True should predict to likeli-
hood ratios around 1 and scores around 0.

limit_samplesize
[int or None, optional] If not None, only this number of samples (events) is used to train
the estimator. Default value: None.

memmap
[bool, optional.] If True, training files larger than 1 GB will not be loaded into memory at
once. Default value: False.

verbose
[{“all”, “many”, “some”, “few”, “none}, optional] Determines verbosity of training. De-
fault value: “some”.

Returns

result: ndarray
Training and validation losses from LocalScoreTrainer.train

13.10 Module contents

112 Chapter 13. madminer.ml package



CHAPTER
FOURTEEN

MADMINER.PLOTTING PACKAGE

14.1 Submodules

14.2 madminer.plotting.distributions module

madminer.plotting.distributions.plot_distributions (filename, observables=None,
parameter_points=None,
uncertainties='nuisance’,
nuisance_parameters=None,
draw_nuisance_toys=None, normalize=False,
log=False, observable_labels=None, n_bins=50,
line_labels=None, colors=None, linestyles=None,
linewidths=1.5, toy_linewidths=0.5, alpha=0.15,
toy_alpha=0.75, n_events=None, n_toys=100,
n_cols=3, quantiles_for_range=(0.025, 0.975),
sample_only_from_closest_benchmark=True)

Plots one-dimensional histograms of observables in a MadMiner file for a given set of benchmarks.
Parameters

filename
[str] Filename of a MadMiner HDFS5 file.

observables
[list of str or None, optional] Which observables to plot, given by a list of their names. If
None, all observables in the file are plotted. Default value: None.

parameter_points
[list of (str or ndarray) or None, optional] Which parameter points to use for histogramming
the data. Given by a list, each element can either be the name of a benchmark in the Mad-
Miner file, or an ndarray specifying any parameter point in a morphing setup. If None, all
physics (non-nuisance) benchmarks defined in the MadMiner file are plotted. Default value:
None.

uncertainties
[{“nuisance”, “none”}, optional] Defines how uncertainty bands are drawn. With “nui-
sance”, the variation in cross section from all nuisance parameters is added in quadrature.
With “none”, no error bands are drawn.

nuisance_parameters
[None or list of int, optional] If uncertainties is “nuisance”, this can restrict which nuisance
parameters are used to draw the uncertainty bands. Each entry of this list is the index of one
nuisance parameter (same order as in the MadMiner file).

113



MadMiner Documentation, Release 0.9.5

draw_nuisance_toys
[None or int, optional] If not None and uncertainties is “nuisance”, sets the number of nui-
sance toy distributions that are drawn (in addition to the error bands).

normalize
[bool, optional] Whether the distribution is normalized to the total cross section. Default
value: False.

log
[bool, optional] Whether to draw the y axes on a logarithmic scale. Default value: False.

observable_labels
[None or list of (str or None), optional] x-axis labels naming the observables. If None, the
observable names from the MadMiner file are used. Default value: None.

n_bins
[int, optional] Number of histogram bins. Default value: 50.

line_labels
[None or list of (str or None), optional] Labels for the different parameter points. If None
and if parameter_points is None, the benchmark names from the MadMiner file are used.
Default value: None.

colors
[None or str or list of str, optional] Matplotlib line (and error band) colors for the distributions.
If None, uses default colors. Default value: None.

linestyles
[None or str or list of str, optional] Matplotlib line styles for the distributions. If None, uses
default linestyles. Default value: None.

linewidths
[float or list of float, optional] Line widths for the contours. Default value: 1.5.

toy_linewidths
[float or list of float or None, optional] Line widths for the toy replicas, if uncertainties is
“nuisance” and draw_nuisance_toys is not None. If None, linewidths is used. Default value:
1.

alpha
[float, optional] alpha value for the uncertainty bands. Default value: 0.25.

toy_alpha
[float, optional] alpha value for the toy replicas, if uncertainties is “nuisance” and
draw_nuisance_toys is not None. Default value: 0.75.

n_events
[None or int, optional] If not None, sets the number of events from the MadMiner file that
will be analyzed and plotted. Default value: None.

n_toys
[int, optional] Number of toy nuisance parameter vectors used to estimate the systematic
uncertainties. Default value: 100.

n_cols
[int, optional] Number of columns of subfigures in the plot. Default value: 3.

quantiles_for_range
[tuple of two float, optional] Tuple (min_quantile, max_quantile) that defines how the ob-
servable range is determined for each panel. Default: (0.025, 0.075).

114 Chapter 14. madminer.plotting package



MadMiner Documentation, Release 0.9.5

sample_only_from_closest_benchmark
[bool, optional] If True, only weighted events originally generated from the closest bench-
marks are used. Default value: True.

Returns

figure
[Figure] Plot as Matplotlib Figure instance.

madminer.plotting.distributions.plot_histograms (histos, observed=None, observed_weights=None,
xrange=None, yrange=None, zrange=None,
log=False, histo_labels=None,
observed_label="Data’, xlabel=None, ylabel=None,
zlabel=None, colors=None, linestyles=None,
linewidths=1.5, markercolor="black’,
markersize=20.0, cmap="viridis', n_cols=2)

14.3 madminer.plotting.fisherinformation module

madminer.plotting.fisherinformation.plot_distribution_of_information(xbins, xsecs,

fisher_information_matrices,
fisher_information_matrices_aux=None,
xlabel=None, xmin=None,
xmax=None,
log_xsec=False,
norm_xsec=True,
epsilon=1e-09,
figsize=(5.4, 4.5),
fontsize=None)
Plots the distribution of the cross section together with the distribution of the Fisher information.

Parameters
xbins
[list of float] Bin boundaries.

xsecs
[list of float] Cross sections (in pb) per bin.

fisher_information_matrices
[list of ndarray] Fisher information matrices for each bin.

fisher_information_matrices_aux

[list of ndarray or None, optional] Additional Fisher information matrices for each bin (will
be plotted with a dashed line).

xlabel
[str or None, optional] Label for the x axis.
xmin
[float or None, optional] Minimum value for the x axis.
Xmax
[float or None, optional] Maximum value for the x axis.
log_xsec
[bool, optional] Whether to plot the cross section on a logarithmic y axis.

14.3. madminer.plotting.fisherinformation module 115



MadMiner Documentation, Release 0.9.5

norm_xsec
[bool, optional] Whether the cross sections are normalized to 1.

epsilon
[float, optional] Numerical factor.

figsize
[tuple of float, optional] Figure size, default: (5.4, 4.5)

fontsize: float, optional
Fontsize, default None

Returns

figure
[Figure] Plot as Matplotlib Figure instance.

madminer.plotting. fisherinformation.plot_fisher_information_contours_2d(fisher_information_matrices,
fisher_information_covariances=None,
refer-
ence_thetas=None,
contour_distance=1.0,
xlabel="$\\theta_03%',
vlabel="8\theta_1$',
xrange=(-1.0, 1.0),
yrange=(-1.0, 1.0),
labels=None,
inline_labels=None,
resolution=500,
colors=None,
linestyles=None,
linewidths=1.5,
alphas=1.0, al-
phas_uncertainties=0.25,
sigma_uncertainties=1,
ax=None)

Visualizes 2x2 Fisher information matrices as contours of constant Fisher distance from a reference point thetaO.

The local (tangent-space) approximation is used: distances d(theta) are given by d(theta)"2 = (theta - theta0)_i
I_ij (theta - theta0)_j, summing over i and j.

Parameters

fisher_information_matrices
[list of ndarray] Fisher information matrices, each with shape (2,2).

fisher_information_covariances
[None or list of (ndarray or None), optional] Covariance matrices for the Fisher information
matrices. Has to have the same length as fisher_information_matrices, and each entry has to
be None (no uncertainty) or a tensor with shape (2,2,2,2). Default value: None.

reference_thetas
[None or list of (ndarray or None), optional] Reference points from which the distances are
calculated. If None, the origin (0,0) is used. Default value: None.

contour_distance
[float, optional.] Distance threshold at which the contours are drawn. Default value: 1.

xlabel
[str, optional] Label for the x axis. Default value: r’$ heta_0$’.

116 Chapter 14. madminer.plotting package



MadMiner Documentation, Release 0.9.5

ylabel
[str, optional] Label for the y axis. Default value: r’$ heta_1$’.

xrange
[tuple of float, optional] Range (min, max) for the x axis. Default value: (-1., 1.).

yrange
[tuple of float, optional] Range (min, max) for the y axis. Default value: (-1., 1.).

labels
[None or list of (str or None), optional] Legend labels for the contours. Default value: None.

inline_labels
[None or list of (str or None), optional] Inline labels for the contours. Default value: None.

resolution
[int] Number of points per axis for the calculation of the distances. Default value: 500.

colors
[None or str or list of str, optional] Matplotlib line (and error band) colors for the contours.
If None, uses default colors. Default value: None.

linestyles
[None or str or list of str, optional] Matploitlib line styles for the contours. If None, uses
default linestyles. Default value: None.

linewidths
[float or list of float, optional] Line widths for the contours. Default value: 1.5.

alphas
[float or list of float, optional] Opacities for the contours. Default value: 1.

alphas_uncertainties
[float or list of float, optional] Opacities for the error bands. Default value: 0.25.

sigma_uncertainties
[float, optional] Number of gaussian sigmas used when presenting uncertainty bands. Default
value: 1.

ax: axes or None, optional
Predefined axes as part of figure instead of standalone figure. Default: None

Returns

figure
[Figure] Plot as Matplotlib Figure instance.

madminer.plotting.fisherinformation.plot_fisherinfo_barplot (fisher_information_matrices, labels,
determinant_indices=None,
eigenvalue_colors=None,
bar_colors=None)

Parameters

fisher_information_matrices
[list of ndarray] Fisher information matrices

labels
[List of str] Labels for the x axis

determinant_indices
[list of int or None, optional] If not None, the determinants will be based only on the indices
given here. Default value: None.

14.3. madminer.plotting.fisherinformation module 117



MadMiner Documentation, Release 0.9.5

eigenvalue_colors
[None or list of str] Colors for the eigenvalue decomposition. If None, default colors are
used. Default value: None.

bar_colors
[None or list of str] Colors for the determinant bars. If None, default colors are used. Default
value: None.

Returns

figure
[Figure] Plot as Matplotlib Figure instance.

14.4 madminer.plotting.limits module

madminer.plotting.limits.plot_pvalue_limits(p_values, best_fits, labels, grid_ranges, grid_resolutions,
levels=[0.32], single_plot=True, show_index=None,
xlabel="8\\theta_0$', ylabel='$\\theta_1$',
p_val_min=0.001, p_val_max=1)

Function that plots the limits obtained from the AsymptoticLimits, Likelihood, FisherInformation and Informa-
tion Geometry class. Note that only 2 dimensional grids are supported.

Parameters

p_values
[list of ndarray or dict] List/dictionary of p-values with shape (nmethods, ngridpoints)

best_fits
[list of int or dict] List/dictionary of best fit points for each method with shape (nmethods)

labels
[list of string or None] List/dictionary of best labels for each method with shape (nmethods).
If None, it is assumed that dictionaries are provided and all entries will be used.

grid_ranges
[list of (tuple of float) or None, optional] Specifies the boundaries of the parameter grid on
which the p-values are evaluated. It should be [(min, max), (min, max), ..., (min, max)],
where the list goes over all parameters and min and max are float. If None, thetas_eval has
to be given. Default: None.

grid_resolutions
[int or list of int, optional] Resolution of the parameter space grid on which the p-values are
evaluated. If int, the resolution is the same along every dimension of the hypercube. If list
of int, the individual entries specify the number of points along each parameter individually.
Doesn’t have any effect if grid_ranges is None. Default value: 25.

levels
[list of float, optional] list of p-values used to draw contour lines. Default: [0.32]

single_plot
[bool, optional] If True, only one summary plot is shown which contains confidence contours
and best fit points for all methods, and the p-value grid for a selected method (if show_index
is not None). If False, additional plots with the p-value grid, confidence contours and best
fit points for all methods are provided. Default: True

show_index
[int, optional] If None, no p-value grid is shown in summary plot. If show_index=n, the
p-value grid of the nth method is shown in the summary plot. Default is None.

118 Chapter 14. madminer.plotting package



MadMiner Documentation, Release 0.9.5

xlabel,ylabel
[string, optional] Labels for the x and y axis. Default: xlabel=r’$ heta_0$’ and ylabel=r"$
heta_1$’".

p_val_min,p_val_max
[float, optional] Plot range for p-values. Default: p_val_min=0.001 and p_val_max=1.

14.5 madminer.plotting.morphing module

madminer.plotting.morphing.plot_1d_morphing_basis (morpher, xlabel="8\theta$', xrange=(-1.0, 1.0),
resolution=100)

Visualizes a morphing basis and morphing errors for problems with a two-dimensional parameter space.
Parameters

morpher
[PhysicsMorpher] PhysicsMorpher instance with defined basis.

xlabel
[str, optional] Label for the x axis. Default value: r’$ heta$’.

xrange
[tuple of float, optional] Range (min, max) for the x axis. Default value: (-1., 1.).

resolution
[int, optional] Number of points per axis for the rendering of the squared morphing weights.
Default value: 100.

Returns

figure
[Figure] Plot as Matplotlib Figure instance.

madminer.plotting.morphing.plot_2d_morphing_basis (morpher, xlabel="$\theta_0$',
ylabel="$\\theta_13$', xrange=(-1.0, 1.0),
yrange=(-1.0, 1.0), crange=(1.0, 100.0),
resolution=100)

Visualizes a morphing basis and morphing errors for problems with a two-dimensional parameter space.

Parameters

morpher
[PhysicsMorpher] PhysicsMorpher instance with defined basis.

xlabel
[str, optional] Label for the x axis. Default value: r’$ heta_0$’.

ylabel
[str, optional] Label for the y axis. Default value: r’$ heta_1$’.

xrange
[tuple of float, optional] Range (min, max) for the x axis. Default value: (-1., 1.).

yrange
[tuple of float, optional] Range (min, max) for the y axis. Default value: (-1., 1.).

crange
[tuple of float, optional] Range (min, max) for the color map. Default value: (1., 100.).

14.5. madminer.plotting.morphing module 119



MadMiner Documentation, Release 0.9.5

resolution
[int, optional] Number of points per axis for the rendering of the squared morphing weights.
Default value: 100.

Returns

figure
[Figure] Plot as Matplotlib Figure instance.

madminer.plotting.morphing.plot_nd_morphing_basis_scatter (morpher, crange=(1.0, 100.0),
n_test_thetas=1000)

Visualizes a morphing basis and morphing errors with scatter plots between each pair of operators.
Parameters

morpher
[PhysicsMorpher] PhysicsMorpher instance with defined basis.

crange
[tuple of float, optional] Range (min, max) for the color map. Default value: (1. 100.).

n_test_thetas
[int, optional] Number of random points evaluated. Default value: 1000.

Returns

figure
[Figure] Plot as Matplotlib Figure instance.

madminer.plotting.morphing.plot_nd_morphing_basis_slices(morpher, crange=(1.0, 100.0),
resolution=50)

Visualizes a morphing basis and morphing errors with two-dimensional slices through parameter space.
Parameters

morpher
[PhysicsMorpher] PhysicsMorpher instance with defined basis.

crange
[tuple of float, optional] Range (min, max) for the color map.

resolution
[int, optional] Number of points per panel and axis for the rendering of the squared morphing
weights. Default value: 50.

Returns

figure
[Figure] Plot as Matplotlib Figure instance.

14.6 madminer.plotting.uncertainties module

madminer.plotting.uncertainties.plot_systematics(filename, theta, observable, obs_label, obs_range,
n_bins=50, n_events=None, n_toys=100,
linecolor="black’, bandcolors=None,
band_alpha=0.2, ratio_range=(0.8, 1.2))

Plots absolute and relative uncertainty bands for all systematic uncertainties in a histogram of one observable in
a MadMiner file.

Parameters

120 Chapter 14. madminer.plotting package



MadMiner Documentation, Release 0.9.5

filename
[str] Filename of a MadMiner HDF?5 file.

theta
[ndarray, optional] Which parameter points to use for histogramming the data.

observable
[str] Which observable to plot, given by its name in the MadMiner file.

obs_label
[str] x-axis label naming the observable.

obs_range
[tuple of two float] Range to be plotted for the observable.

n_bins
[int] Number of bins. Default value: 50.

n_events
[None or int, optional] If not None, sets the number of events from the MadMiner file that
will be analyzed and plotted. Default value: None.

n_toys
[int, optional] Number of toy nuisance parameter vectors used to estimate the systematic
uncertainties. Default value: 100.

linecolor
[str, optional] Line color for central prediction. Default value: “black”.

bandcolors
[None or list of str, optional] Error band colors. Default value: None.

ratio_range
[tuple of two float] y-axis range for the plots of the ratio to the central prediction. Default
value: (0.8, 1.2).

Returns

figure
[Figure] Plot as Matplotlib Figure instance.

madminer.plotting.uncertainties.plot_uncertainty (filename, theta, observable, obs_label, obs_range,
n_bins=50, systematics=None, n_events=None,
n_toys=100, linecolor="black’,
bandcolor1="#CCO02E', bandcolor2='orange’,
ratio_range=(0.8, 1.2))
Plots absolute and relative uncertainty bands in a histogram of one observable in a MadMiner file.
Parameters

filename
[str] Filename of a MadMiner HDFS5 file.

theta
[ndarray, optional] Which parameter points to use for histogramming the data.

observable
[str] Which observable to plot, given by its name in the MadMiner file.

obs_label
[str] x-axis label naming the observable.

14.6. madminer.plotting.uncertainties module 121



MadMiner Documentation, Release 0.9.5

obs_range
[tuple of two float] Range to be plotted for the observable.

n_bins
[int] Number of bins. Default value: 50.

systematics
[None or list of str, optional] This can restrict which nuisance parameters are used to draw
the uncertainty bands. Each entry of this list is the name of a systematic uncertainty (see
MadMiner.add_systematics()).

n_events
[None or int, optional] If not None, sets the number of events from the MadMiner file that
will be analyzed and plotted. Default value: None.

n_toys
[int, optional] Number of toy nuisance parameter vectors used to estimate the systematic
uncertainties. Default value: 100.

linecolor
[str, optional] Line color for central prediction. Default value: “black”.

bandcolorl
[str, optional] Error band color for 1 sigma uncertainty. Default value: “#CCO02E”.

bandcolor2
[str, optional] Error band color for 2 sigma uncertainty. Default value: “orange”.

ratio_range
[tuple of two floar] y-axis range for the plots of the ratio to the central prediction. Default
value: (0.8, 1.2).

Returns

figure
[Figure] Plot as Matplotlib Figure instance.

14.7 Module contents

122 Chapter 14. madminer.plotting package



CHAPTER
FIFTEEN

MADMINER.SAMPLING PACKAGE

15.1 Submodules

15.2 madminer.sampling.combine module

madminer.sampling.combine.combine_and_shuffle (input_filenames: List[str], output_filename: str,
k_factors: Optional[Union[List[float], float]] = None,
recalculate_header: bool = True)

Combines multiple MadMiner files into one, and shuflles the order of the events.

Note that this function assumes that all samples are generated with the same setup, including identical bench-
marks (and thus morphing setup). If it is used with samples with different settings, there will be wrong results!
There are no explicit cross checks in place yet!

Parameters

input_filenames
[list of str] List of paths to the input MadMiner files.

output_filename
[str] Path to the combined MadMiner file.

k_factors
[float or list of float, optional] Multiplies the weights in input_filenames with a universal
factor (if k_factors is a float) or with independent factors (if it is a list of float). Default
value: None.

recalculate_header
[bool, optional] Recalculates the total number of events. Default value: True.

Returns

None

123



MadMiner Documentation, Release 0.9.5

15.3 madminer.sampling.parameters module

madminer.sampling.parameters.benchmark (benchmark_name)

Utility function to be used as input to various SampleAugmenter functions, specifying a single parameter bench-
mark.

Parameters

benchmark_name
[str] Name of the benchmark (as in madminer.core. MadMiner.add_benchmark)

Returns

output
[tuple] Input to various SampleAugmenter functions

madminer.sampling.parameters.benchmarks (benchmark_names)

Utility function to be used as input to various SampleAugmenter functions, specifying multiple parameter bench-

marks.
Parameters
benchmark_names
[list of str] List of names of the benchmarks (as in  mad-
miner.core.MadMiner.add_benchmark)
Returns

output
[tuple] Input to various SampleAugmenter functions

madminer.sampling.parameters.iid_nuisance_parameters (shape='gaussian’, param0=0.0, paraml=1.0)

Utility function to be used as input to various SampleAugmenter functions, specifying that nuisance parameters
are fixed at their nominal values.

Parameters

shape
[[“flat”, “gaussian”], optional] Parameter prior shape. Default value: “gaussian”.

param(
[float, optional] Gaussian mean or flat lower bound. Default value: 0.0.

paraml
[float, optional] Gaussian std or flat upper bound. Default value: 1.0.

Returns

output
[tuple] Input to various SampleAugmenter functions.

madminer.sampling.parameters.morphing_point (theta)

Utility function to be used as input to various SampleAugmenter functions, specifying a single parameter point
theta in a morphing setup.

Parameters

theta
[ndarray or list] Parameter point with shape (n_parameters,)

Returns

124 Chapter 15. madminer.sampling package



MadMiner Documentation, Release 0.9.5

output
[tuple] Input to various SampleAugmenter functions
madminer.sampling.parameters.morphing_points (thetas)
Utility function to be used as input to various SampleAugmenter functions, specifying multiple parameter points
theta in a morphing setup.
Parameters

thetas
[ndarray or list of lists or list of ndarrays] Parameter points with shape (n_thetas,

n_parameters)
Returns

output
[tuple] Input to various SampleAugmenter functions

madminer.sampling.parameters.nominal_nuisance_parameters()
Utility function to be used as input to various SampleAugmenter functions, specifying that nuisance parameters
are fixed at their nominal values.

Returns

output
[tuple] Input to various SampleAugmenter functions

madminer.sampling.parameters.random_morphing_points (n_thetas, priors)
Utility function to be used as input to various SampleAugmenter functions, specifying random parameter points
sampled from a prior in a morphing setup.

Parameters

n_thetas
[int] Number of parameter points to be sampled

priors
[list of tuples] Priors for each parameter is characterized by a tuple of the form (prior_shape,
prior_param_0, prior_param_1). Currently, the supported prior_shapes are flat, in which
case the two other parameters are the lower and upper bound of the flat prior, and gaussian,
in which case they are the mean and standard deviation of a Gaussian.

Returns

output
[tuple] Input to various SampleAugmenter functions

15.4 madminer.sampling.sampleaugmenter module

class madminer.sampling.sampleaugmenter.SampleAugmenter (filename, disable_morphing=Faulse,
include_nuisance_parameters=True)

Bases: DataAnalyzer
Sampling / unweighting and data augmentation.

After the generated events have been analyzed and the observables and weights have been saved into a MadMiner
file, for instance with madminer.delphes.DelphesReader or madminer.lhe. LHEReader, the next step is typically
the generation of training and evaluation data for the machine learning algorithms. This generally involves two

15.4. madminer.sampling.sampleaugmenter module 125



MadMiner Documentation, Release 0.9.5

(related) tasks: unweighting, i.e. the creation of samples that do not carry individual weights but follow some
distribution, and the extraction of the joint likelihood ratio and / or joint score (the “augmented data”).

After initializing SampleAugmenter with the filename of a MadMiner file, this is done with a single function
call. Depending on the downstream inference algorithm, there are different possibilities:

SampleAugmenter.sample_train_plain() creates plain training samples without augmented data.

SampleAugmenter.sample_train_local() creates training samples for local methods based on the score, such
as SALLY and SALLINO.

SampleAugmenter.sample_train_density() creates training samples for non-local methods based on density
estimation and the score, such as SCANDAL.

SampleAugmenter.sample_train_ratio() creates training samples for non-local, ratio-based methods like
RASCAL or ALICE.

SampleAugmenter.sample_train_more_ratios() does the same, but can extract joint ratios and scores at
more parameter points. This additional information can be used efficiently in the setup with a “doubly pa-
rameterized” likelihood ratio estimator that models the dependence on both the numerator and denominator
hypothesis.

SampleAugmenter.sample_test() creates evaluation samples for all methods.

Please see the tutorial for a walkthrough.

For the curious, let us explain these steps in a little bit more detail (assuming a morphing setup):

The sample augmentation step starts from a set of events (x_i, z_i) together with corresponding weights for
each morphing basis point theta_b, p(x_i, z_i | theta_b).

Morphing: Assume we want to generate data sampled from a parameter point theta, which is not necessarily
one of the basis points theta_b. Using the morphing structure, the event weights for p(x_i, z_i | theta) can
be calculated. Note that the events (phase-space points) (x_i, z_i) are not changed, only their weights.

Unweighting: For the machine learning part, such a weighted event sample is not practical. Instead we aim
for an unweighted one, in which events can appear multiple times. If the user request N events (which can be
larger than the original number of events in the MadGraph runs), SampleAugmenter will draw N samples
(x_i, z_i) from the discrete distribution p(x_i, z_i | theta). In other words, it draws (with replacement) N of
the original events from MadGraph, with probabilities given by the morphing setup before. This is similar
to what np.random.choice() does.

Augmentation: For each of the drawn samples, the morphing setup can be used to calculate the joint like-
lihood ratio and / or the joint score (this depends on which SampleAugmenter function is called).
Parameters

filename
[str] Path to MadMiner file (for instance the output of mad-
miner.delphes.DelphesProcessor.save()).

disable_morphing
[bool, optional] If True, the morphing setup is not loaded from the file. Default value: False.

include_nuisance_parameters
[bool, optional] If True, nuisance parameters are taken into account. Default value: True.

126

Chapter 15. madminer.sampling package



MadMiner Documentation, Release 0.9.5

Methods
cross_sections(theta[, nu]) Calculates the total cross sections for all specified
thetas.
event_loader([start, end, batch_size, ...]) Yields batches of events in the MadMiner file.
sample_test(theta, n_samples[, nu, ...]) Extracts evaluation samples x ~ p(x|theta) without

any augmented data.
sample_train_density(theta, n_samples[, nu, Extracts training samples x ~ p(x|theta) as well as the

) joint score t(x, z|theta), where theta is sampled from
a prior.

sample_train_local(theta, n_samples[, nu, ...]) Extracts training samples x ~ p(x|theta) as well as the
joint score t(x, z|theta).

sample_train_more_ratios(theta0, thetal, ...) Extracts training samples x ~ p(x|theta0) and x ~

p(x|thetal) together with the class label y, the joint
likelihood ratio r(x,z|thetaO, thetal), and the joint
score f(x,z|theta0).

sample_train_plain(theta, n_samples[, nu, ...]) Extracts plain training samples x ~ p(x|theta) without
any augmented data.

sample_train_ratio(theta0, thetal, n_samples) Extracts training samples x ~ p(x|theta0) and x ~
p(x|thetal) together with the class label y, the joint
likelihood ratio r(x,z|thetaO, thetal), and, if morph-
ing is set up, the joint score #(x,z|theta0).

weighted_events([theta, nu, start_event, ...]) Returns all events together with the benchmark
weights (if theta is None) or weights for a given theta.

xsec_gradients(thetas[, nus, partition, ...]) Returns the gradient of total cross sections with re-
spect to parameters.

xsecs([thetas, nus, partition, test_split, ...]) Returns the total cross sections for benchmarks or pa-

rameter points.

cross_sections (theta, nu=None)
Calculates the total cross sections for all specified thetas.

Parameters

theta
[tuple] Tuple (type, value) that defines the parameter point or prior over parameter points
at which the cross section is calculated. Pass the output of the functions benchmark(),
benchmarks(), morphing_point(), morphing_points(), or random_morphing_points().

nu
[tuple or None, optional] Tuple (type, value) that defines the nuisance parameter point
or prior over nuisance parameter points at which the cross section is calculated. Pass the
output of the functions benchmark(), benchmarks(), morphing_point(), morphing_points(),
or random_morphing_points(). Default value: None.

Returns

thetas
[ndarray] Parameter points with shape (n_thetas, n_parameters) or (n_thetas, n_parameters
+ n_nuisance_parameters).

Xsecs
[ndarray] Total cross sections in pb with shape (n_thetas, ).

xsec_uncertainties
[ndarray] Statistical uncertainties on the total cross sections in pb with shape (n_thetas, ).

15.4. madminer.sampling.sampleaugmenter module 127



MadMiner Documentation, Release 0.9.5

sample_test (theta, n_samples, nu=None, sample_only_from_closest_benchmark=True, folder=None,
filename=None, test_split=0.2, validation_split=0.2, partition="test', n_processes=1,
n_eff_forced=None, double_precision=False)

Extracts evaluation samples x ~ p(x|theta) without any augmented data.
Parameters

theta
[tuple] Tuple (type, value) that defines the parameter point or prior over parameter points
for the sampling. Pass the output of the functions constant_benchmark_theta(), multi-
ple_benchmark_thetas(), constant_morphing_theta( ), multiple_morphing_thetas(), or ran-
dom_morphing_thetas().

n_samples
[int] Total number of events to be drawn.

nu
[None or tuple, optional] Tuple (type, value) that defines the nuisance parameter point or
prior over parameter points for the sampling. Default value: None

sample_only_from_closest_benchmark
[bool, optional] If True, only weighted events originally generated from the closest bench-
marks are used. Default value: True.

folder
[str or None] Path to the folder where the resulting samples should be saved (ndarrays in
.npy format). Default value: None.

filename
[str or None] Filenames for the resulting samples. A prefix such as ‘x’ or ‘thetaQ’ as well
as the extension ‘.npy’ will be added automatically. Default value: None.

test_split
[float or None, optional] Fraction of events reserved for the evaluation sample (that will not
be used for any training samples). Default value: 0.2.

validation_split
[float or None, optional] Fraction of events reserved for testing. Default value: 0.2.

partition

[{“train”, “test”,
“test”.

validation”, “all”’}, optional] Which event partition to use. Default value:

n_processes
[None or int, optional] If None or larger than 1, MadMiner will use multiprocessing to
parallelize the sampling. In this case, n_workers sets the number of jobs running in parallel,
and None will use the number of CPUs. Default value: 1.

n_eff_forced
[float, optional] If not None, MadMiner will require the relative weights of the events to be
smaller than 1/n_eff_forced and ignore other events. This can help to reduce statistical ef-
fects caused by a small number of events with very large weights obtained by the morphing
procedure. Default value: None

double_precision
[bool, optional] Use double floating-point precision. Default value: False

Returns

128 Chapter 15. madminer.sampling package



MadMiner Documentation, Release 0.9.5

X
[ndarray] Observables with shape (n_samples, n_observables). The same information is
saved as a file in the given folder.

theta
[ndarray] Parameter points used for sampling with shape (n_samples, n_parameters). The
same information is saved as a file in the given folder.

effective_n_samples
[int] Effective number of samples, defined as 1/max(event_probabilities), where
event_probabilities are the fractions of the cross section carried by each event.

sample_train_density (theta, n_samples, nu=None, sample_only_from_closest_benchmark=True,
folder=None, filename=None, nuisance_score='auto’, test_split=0.2,
validation_split=0.2, partition="train’, n_processes=1, n_eff_forced=None,
double_precision=False)

Extracts training samples x ~ p(x|theta) as well as the joint score t(x, z|theta), where theta is sampled from
a prior. This can be used for inference methods such as SCANDAL.

Parameters

theta
[tuple] Tuple (type, value) that defines the numerator parameter point or prior over param-
eter points for the sampling. Pass the output of the functions constant_benchmark_theta(),
multiple_benchmark_thetas(), constant_morphing_theta(), multiple_morphing_thetas(),
or random_morphing_thetas().

n_samples
[int] Total number of events to be drawn.

nu
[None or tuple, optional] Tuple (type, value) that defines the nuisance parameter point or
prior over parameter points for the sampling. Default value: None

sample_only_from_closest_benchmark
[bool, optional] If True, only weighted events originally generated from the closest bench-
marks are used. Default value: True.

folder
[str or None] Path to the folder where the resulting samples should be saved (ndarrays in
.npy format). Default value: None.

filename
[str or None] Filenames for the resulting samples. A prefix such as ‘x’ or ‘theta0’ as well
as the extension ‘.npy’ will be added automatically. Default value: None.

nuisance_score
[bool or “auto”, optional] If True, the score with respect to the nuisance parameters (at the
default position) will also be calculated. If False, only the score with respect to the physics
parameters is calculated. For “auto”, the nuisance score will be calculated if a nuisance
setup is defined. Default: True.

test_split
[float or None, optional] Fraction of events reserved for the evaluation sample (that will not
be used for any training samples). Default value: 0.2.

validation_split
[float or None, optional] Fraction of events reserved for testing. Default value: 0.2.

15.4. madminer.sampling.sampleaugmenter module 129



MadMiner Documentation, Release 0.9.5

partition
[{“train”, “test”, “validation”, “all”’}, optional] Which event partition to use. Default value:
“train”.

n_processes
[None or int, optional] If None or larger than 1, MadMiner will use multiprocessing to
parallelize the sampling. In this case, n_workers sets the number of jobs running in parallel,
and None will use the number of CPUs. Default value: 1.

n_eff_forced
[float, optional] If not None, MadMiner will require the relative weights of the events to be
smaller than 1/n_eff_forced and ignore other events. This can help to reduce statistical ef-
fects caused by a small number of events with very large weights obtained by the morphing
procedure. Default value: None

double_precision
[bool, optional] Use double floating-point precision. Default value: False.

Returns

X
[ndarray] Observables with shape (n_samples, n_observables). The same information is
saved as a file in the given folder.

theta
[ndarray] Parameter points used for sampling (and evaluation of the joint score) with shape
(n_samples, n_parameters). The same information is saved as a file in the given folder.

t_xz
[ndarray] Joint score evaluated at theta with shape (n_samples, n_parameters). The same
information is saved as a file in the given folder.

effective_n_samples
[int] Effective number of samples, defined as 1/max(event_probabilities), where
event_probabilities are the fractions of the cross section carried by each event.

sample_train_local (theta, n_samples, nu=None, sample_only_from_closest_benchmark=True,
folder=None, filename=None, nuisance_score='auto’, test_split=0.2,
validation_split=0.2, partition="train', n_processes=1, log_message=True,
n_eff_forced=None, double_precision=False)

Extracts training samples x ~ p(x|theta) as well as the joint score t(x, z|theta). This can be used for inference
methods such as SALLY and SALLINO.

Parameters

theta
[tuple] Tuple (type, value) that defines the parameter point for the sampling. This is also
where the score is evaluated. Pass the output of the functions constant_benchmark_theta()
or constant_morphing_theta().

n_samples
[int] Total number of events to be drawn.

nu
[None or tuple, optional] Tuple (type, value) that defines the nuisance parameter point or
prior over parameter points for the sampling. Default value: None

sample_only_from_closest_benchmark
[bool, optional] If True, only weighted events originally generated from the closest bench-
marks are used. Default value: True.

130 Chapter 15. madminer.sampling package



MadMiner Documentation, Release 0.9.5

folder
[str or None] Path to the folder where the resulting samples should be saved (ndarrays in
.npy format). Default value: None.

filename
[str or None] Filenames for the resulting samples. A prefix such as ‘x’ or ‘theta0’ as well
as the extension ‘.npy’ will be added automatically. Default value: None.

nuisance_score
[bool or “auto”, optional] If True, the score with respect to the nuisance parameters (at the
default position) will also be calculated. If False, only the score with respect to the physics
parameters is calculated. For “auto”, the nuisance score will be calculated if a nuisance
setup is defined. Default: True.

test_split
[float or None, optional] Fraction of events reserved for the evaluation sample (that will not
be used for any training samples). Default value: 0.2.

validation_split
[float or None, optional] Fraction of events reserved for testing. Default value: 0.2.

partition

[{*“train”, “test”,
“train”.

validation”, “all”’}, optional] Which event partition to use. Default value:

n_processes
[None or int, optional] If None or larger than 1, MadMiner will use multiprocessing to
parallelize the sampling. In this case, n_workers sets the number of jobs running in parallel,
and None will use the number of CPUs. Default value: 1.

log_message
[bool, optional] If True, logging output. This option is only designed for internal use.

n_eff_forced
[float, optional] If not None, MadMiner will require the relative weights of the events to be
smaller than 1/n_eff_forced and ignore other events. This can help to reduce statistical ef-
fects caused by a small number of events with very large weights obtained by the morphing
procedure. Default value: None

double_precision
[bool, optional] Use double floating-point precision. Default value: False.

Returns

X
[ndarray] Observables with shape (n_samples, n_observables). The same information is
saved as a file in the given folder.

theta
[ndarray] Parameter points used for sampling (and evaluation of the joint score) with shape
(n_samples, n_parameters). The same information is saved as a file in the given folder.

t_xz
[ndarray] Joint score evaluated at theta with shape (n_samples, n_parameters +
n_nuisance_parameters) (if nuisance_score is True) or (n_samples, n_parameters). The
same information is saved as a file in the given folder.

effective_n_samples
[int] Effective number of samples, defined as 1/max(event_probabilities), where
event_probabilities are the fractions of the cross section carried by each event.

15.4. madminer.sampling.sampleaugmenter module 131



MadMiner Documentation, Release 0.9.5

sample_train_more_ratios (theta0, thetal, n_samples, nuO=None, nul=None,
sample_only_from_closest_benchmark=True, folder=None, filename=None,
additional_thetas=None, nuisance_score="auto’, test_split=0.2,
validation_split=0.2, partition="train', n_processes=1, n_eff_forced=None,
double_precision=False)

Extracts training samples x ~ p(x|theta0) and x ~ p(x|thetal ) together with the class label y, the joint likeli-
hood ratio r(x,z|thetaO, thetal), and the joint score #(x,z|theta0). This information can be used in inference
methods such as CARL, ROLR, CASCAL, and RASCAL.

With the keyword additional_thetas, this function allows to extract joint ratios and scores at more parameter
points than just thetaO and thetal. This additional information can be used efficiently in the setup with a
“doubly parameterized” likelihood ratio estimator that models the dependence on both the numerator and
denominator hypothesis.

Parameters

theta0
Tuple (type, value) that defines the numerator parameter point or prior over parameter
points for the sampling. Pass the output of the functions constant_benchmark_theta(),
multiple_benchmark_thetas(), constant_morphing_theta(), multiple_morphing_thetas(),
or random_morphing_thetas().

thetal
Tuple (type, value) that defines the denominator parameter point or prior over parame-
ter points for the sampling. Pass the output of the functions constant_benchmark_theta(),
multiple_benchmark_thetas(), constant_morphing_theta(), multiple_morphing_thetas(),
or random_morphing_thetas().

n_samples
[int] Total number of events to be drawn.

nul
[None or tuple, optional] Tuple (type, value) that defines the numerator nuisance parameter
point or prior over parameter points for the sampling. Default value: None

nul
[None or tuple, optional] Tuple (type, value) that defines the denominator nuisance param-
eter point or prior over parameter points for the sampling. Default value: None

sample_only_from_closest_benchmark
[bool, optional] If True, only weighted events originally generated from the closest bench-
marks are used. Default value: True.

folder
[str or None] Path to the folder where the resulting samples should be saved (ndarrays in
.npy format). Default value: None.

filename
[str or None] Filenames for the resulting samples. A prefix such as ‘x’ or ‘theta0’ as well
as the extension ‘.npy’ will be added automatically. Default value: None.

additional_thetas

[list of tuple or None] list of tuples (type, value) that defines additional theta points at
which ratio and score are evaluated, and which are then used to create additional train-
ing data points. These can be efficiently used only in the “doubly parameterized” setup
where a likelihood ratio estimator models the dependence of the likelihood ratio on both
the numerator and denominator hypothesis. Pass the output of the helper functions con-
stant_benchmark_theta(), multiple_benchmark_thetas(), constant_morphing_theta(), mul-
tiple_morphing_thetas(), or random_morphing_thetas(). Default value: None.

132

Chapter 15. madminer.sampling package



MadMiner Documentation, Release 0.9.5

nuisance_score
[bool or “auto”, optional] If True, the score with respect to the nuisance parameters (at the
default position) will also be calculated. If False, only the score with respect to the physics
parameters is calculated. For “auto”, the nuisance score will be calculated if a nuisance
setup is defined. Default: True.

test_split
[float or None, optional] Fraction of events reserved for the evaluation sample (that will not
be used for any training samples). Default value: 0.2.

validation_split
[float or None, optional] Fraction of events reserved for testing. Default value: 0.2.

partition
EE T3 99 ¢

[{“train”, “test”,
“train”.

99 ¢

validation”, “all”’}, optional] Which event partition to use. Default value:

n_processes
[None or int, optional] If None or larger than 1, MadMiner will use multiprocessing to
parallelize the sampling. In this case, n_workers sets the number of jobs running in parallel,
and None will use the number of CPUs. Default value: 1.

n_eff forced
[float, optional] If not None, MadMiner will require the relative weights of the events to be
smaller than 1/n_eff_forced and ignore other events. This can help to reduce statistical ef-
fects caused by a small number of events with very large weights obtained by the morphing
procedure. Default value: None

double_precision
[bool, optional] Use double floating-point precision. Default value: False

Returns

X
[ndarray] Observables with shape (n_samples, n_observables). The same information is
saved as a file in the given folder.

theta0
[ndarray] Numerator parameter points with shape (n_samples, n_parameters). The same
information is saved as a file in the given folder.

thetal
[ndarray] Denominator parameter points with shape (n_samples, n_parameters). The same
information is saved as a file in the given folder.

y
[ndarray] Class label with shape (n_samples, n_parameters). y=0 (I) for events sample

from the numerator (denominator) hypothesis. The same information is saved as a file in
the given folder.

r_Xz
[ndarray] Joint likelihood ratio with shape (n_samples,). The same information is saved as
a file in the given folder.

t_xz
[ndarray] Joint score evaluated at thetaO with shape (n_samples, n_parameters). The same
information is saved as a file in the given folder.

effective_n_samples
[int] Effective number of samples, defined as 1/max(event_probabilities), where
event_probabilities are the fractions of the cross section carried by each event.

15.4.

madminer.sampling.sampleaugmenter module

133



MadMiner Documentation, Release 0.9.5

sample_train_plain(theta, n_samples, nu=None, sample_only_from_closest_benchmark=True,
folder=None, filename=None, test_split=0.2, validation_split=0.2, partition="train’,
n_processes=1, n_eff_forced=None, double_precision=False)

Extracts plain training samples x ~ p(x|theta) without any augmented data. This can be use for standard
inference methods such as ABC, histograms of observables, or neural density estimation techniques. It can
also be used to create validation or calibration samples.

Parameters

theta
[tuple] Tuple (type, value) that defines the parameter point or prior over parameter points
for the sampling. Pass the output of the functions constant_benchmark_theta(), multi-
ple_benchmark_thetas(), constant_morphing_theta(), multiple_morphing_thetas(), or ran-
dom_morphing_thetas().

n_samples
[int] Total number of events to be drawn.

nu
[None or tuple, optional] Tuple (type, value) that defines the nuisance parameter point or
prior over parameter points for the sampling. Default value: None

sample_only_from_closest_benchmark
[bool, optional] If True, only weighted events originally generated from the closest bench-
marks are used. Default value: True.

folder
[str or None] Path to the folder where the resulting samples should be saved (ndarrays in
.npy format). Default value: None.

filename
[str or None] Filenames for the resulting samples. A prefix such as ‘x’ or ‘theta0’ as well
as the extension ‘.npy’ will be added automatically. Default value: None.

test_split
[float or None, optional] Fraction of events reserved for the evaluation sample (that will not
be used for any training samples). Default value: 0.2.

validation_split
[float or None, optional] Fraction of events reserved for testing. Default value: 0.2.

partition
EE T3 29 ¢

[{“train”, “test”,
“train”.

validation”, “all”’}, optional] Which event partition to use. Default value:

n_processes
[None or int, optional] If None or larger than 1, MadMiner will use multiprocessing to
parallelize the sampling. In this case, n_workers sets the number of jobs running in parallel,
and None will use the number of CPUs. Default value: 1.

n_eff forced
[float, optional] If not None, MadMiner will require the relative weights of the events to be
smaller than 1/n_eff_forced and ignore other events. This can help to reduce statistical ef-
fects caused by a small number of events with very large weights obtained by the morphing
procedure. Default value: None

double_precision
[bool, optional] Use double floating-point precision. Default value: False.

Returns

134 Chapter 15. madminer.sampling package



MadMiner Documentation, Release 0.9.5

X
[ndarray] Observables with shape (n_samples, n_observables). The same information is
saved as a file in the given folder.

theta
[ndarray] Parameter points used for sampling with shape (n_samples, n_parameters). The
same information is saved as a file in the given folder.

effective_n_samples
[int] Effective number of samples, defined as 1/max(event_probabilities), where
event_probabilities are the fractions of the cross section carried by each event.

sample_train_ratio (theta0, thetal, n_samples, nuO=None, nul=None,
sample_only_from_closest_benchmark=True, folder=None, filename=None,
nuisance_score='auto', test_split=0.2, validation_split=0.2, partition="train’,
n_processes=1, return_individual_n_effective=False, n_eff_forced=None,
double_precision=False)

Extracts training samples x ~ p(x|theta0) and x ~ p(x|thetal) together with the class label y, the joint like-
lihood ratio r(x,z|theta0, thetal ), and, if morphing is set up, the joint score #(x,z|theta0). This information
can be used in inference methods such as CARL, ROLR, CASCAL, and RASCAL.

Parameters

theta0
[tuple] Tuple (type, value) that defines the numerator parameter point or prior over param-
eter points for the sampling. Pass the output of the functions constant_benchmark_theta(),
multiple_benchmark_thetas(), constant_morphing_theta(), multiple_morphing_thetas(),
or random_morphing_thetas().

thetal
[tuple] Tuple (type, value) that defines the denominator parameter point or prior
over parameter points for the sampling. Pass the output of the functions con-
stant_benchmark_theta(), multiple_benchmark_thetas(), constant_morphing_theta(), mul-
tiple_morphing_thetas(), or random_morphing_thetas().

n_samples
[int] Total number of events to be drawn.

nul
[None or tuple, optional] Tuple (type, value) that defines the numerator nuisance parameter
point or prior over parameter points for the sampling. Default value: None

nul
[None or tuple, optional] Tuple (type, value) that defines the denominator nuisance param-
eter point or prior over parameter points for the sampling. Default value: None

sample_only_from_closest_benchmark
[bool, optional] If True, only weighted events originally generated from the closest bench-
marks are used. Default value: True.

folder
[str or None] Path to the folder where the resulting samples should be saved (ndarrays in
.npy format). Default value: None.

filename
[str or None] Filenames for the resulting samples. A prefix such as ‘x’ or ‘theta0’ as well
as the extension ‘.npy’ will be added automatically. Default value: None.

nuisance_score
[bool or “auto”, optional] If True, the score with respect to the nuisance parameters (at the

15.4. madminer.sampling.sampleaugmenter module 135



MadMiner Documentation, Release 0.9.5

default position) will also be calculated. If False, only the score with respect to the physics
parameters is calculated. For “auto”, the nuisance score will be calculated if a nuisance
setup is defined. Default: True.

test_split
[float or None, optional] Fraction of events reserved for the evaluation sample (that will not
be used for any training samples). Default value: 0.2.

validation_split
[float or None, optional] Fraction of events reserved for testing. Default value: 0.2.

partition
EE T3 EE NI

[{“train”, “test”,
“train”.

EEINT3

validation”, “all”’}, optional] Which event partition to use. Default value:

n_processes
[None or int, optional] If None or larger than 1, MadMiner will use multiprocessing to
parallelize the sampling. In this case, n_workers sets the number of jobs running in parallel,
and None will use the number of CPUs. Default value: 1.

return_individual_n_effective
[bool, optional] Returns number of effective samples for each set individually. Default
value: False.

n_eff forced
[float, optional] If not None, MadMiner will require the relative weights of the events to be
smaller than 1/n_eff_forced and ignore other events. This can help to reduce statistical ef-
fects caused by a small number of events with very large weights obtained by the morphing
procedure. Default value: None

double_precision
[bool, optional] Use double floating-point precision. Default value: False

Returns

X
[ndarray] Observables with shape (n_samples, n_observables). The same information is
saved as a file in the given folder.

theta0
[ndarray] Numerator parameter points with shape (n_samples, n_parameters). The same
information is saved as a file in the given folder.

thetal
[ndarray] Denominator parameter points with shape (n_samples, n_parameters). The same
information is saved as a file in the given folder.

y
[ndarray] Class label with shape (n_samples, n_parameters). y=0 (I) for events sample

from the numerator (denominator) hypothesis. The same information is saved as a file in
the given folder.

r_Xz
[ndarray] Joint likelihood ratio with shape (n_samples,). The same information is saved as
a file in the given folder.

t_xz
[ndarray or None] If morphing is set up, the joint score evaluated at thetaQ with shape
(n_samples, n_parameters). The same information is saved as a file in the given folder. If
morphing is not set up, None is returned (and no file is saved).

136 Chapter 15. madminer.sampling package



MadMiner Documentation, Release 0.9.5

effective_n_samples
[int] Effective number of samples, defined as 1/max(event_probabilities), where
event_probabilities are the fractions of the cross section carried by each event.

15.5 Module contents

15.5. Module contents 137



MadMiner Documentation, Release 0.9.5

138 Chapter 15. madminer.sampling package



CHAPTER
SIXTEEN

INDICES AND TABLES

* genindex
* modindex

¢ search

139



MadMiner Documentation, Release 0.9.5

140 Chapter 16. Indices and tables



m

madminer.
madminer.
.core, 28
madminer.
madminer.
madminer.
madminer.
.fisherinformation.geometry, 37
madminer.
madminer.
madminer.
madminer.
.likelihood, 70
madminer.
madminer.
.likelihood.manipulate, 66
madminer.
madminer.
madminer.
madminer.
madminer.
madminer.
madminer.
madminer.
madminer.

madminer

madminer

madminer

madminer

madminer

madminer

madminer

analysis, 18
analysis.dataanalyzer, 15

core.madminer, 19
delphes, 35
delphes.delphes_reader, 29
fisherinformation, 54

fisherinformation.information, 40
fisherinformation.manipulate, 53
lhe, 61

lhe.lhe_reader, 55

likelihood.base, 63
likelihood.histo, 63

likelihood.neural, 69

limits, 79
limits.asymptotic_limits, 71

ml, 112

ml.base, 81
ml.double_parameterized_ratio, 84
ml.ensemble, 89

ml.likelihood, 94

ml.lookup, 99

.ml.morphing_aware, 99
madminer.
madminer.
madminer.
madminer.

ml.parameterized_ratio, 104
ml.score, 109
plotting, 122
plotting.distributions, 113

.plotting. fisherinformation, 115
madminer.
madminer.
madminer.
madminer.

plotting.limits, 118
plotting.morphing, 119
plotting.uncertainties, 120
sampling, 137

.sampling.combine, 123
madminer.
madminer.

sampling.parameters, 124
sampling.sampleaugmenter, 125

PYTHON MODULE INDEX

141



MadMiner Documentation, Release 0.9.5

142 Python Module Index



A

INDEX

miner.delphes.delphes_reader.DelphesReader
method), 33

add_benchmark () (mad-
miner.core.madminer.MadMiner method), analyse_samples() (mad-
20 miner.lhe.lhe_reader. LHEReader method),
add_cut Q) (madminer.delphes.delphes_reader.DelphesReader 59
method), 30 asymptotic_p_value() (mad-
add_cut O (madminer.lhe.lhe_reader. LHEReader miner.limits.asymptotic_limits.AsymptoticLimits
method), 56 method), 72
add_default_observables() AsymptoticLimits (class in mad-

(mad-
miner.delphes.delphes_reader.DelphesReader
method), 30

add_default_observables() (mad-
miner.lhe.lhe_reader.LHEReader method),
56

add_efficiency() (mad-
miner.lhe.lhe_reader. LHEReader method),
57

add_estimator() (madminer.ml.ensemble. Ensemble
method), 90

add_observable() (mad-
miner.delphes.delphes_reader.DelphesReader
method), 31

add_observable() (mad-
miner.lhe.lhe_reader.LHEReader method),
57

add_observable_from_function() (mad-

miner.delphes.delphes_reader.DelphesReader
method), 32

add_observable_from_function() (mad-
miner.lhe.lhe_reader. LHEReader method),
58

add_parameter() (mad-
miner.core.madminer.MadMiner method),
20

add_sample () (madminer.delphes.delphes_reader.DelphesReader
method), 32

add_sample()  (madminer.lhe.lhe_reader.LHEReader
method), 58

add_systematics() (mad-
miner.core.madminer.MadMiner method),
21

analyse_delphes_samples() (mad-

miner.limits.asymptotic_limits), 71

B

BaselLikelihood (class in madminer.likelihood.base),

63

benchmark () (in module mad-
miner.sampling.parameters), 124

benchmarks () (in module mad-
miner.sampling.parameters), 124

C

calculate_fisher_information() (mad-
miner.ml.base. Estimator method), 83

calculate_fisher_information() (mad-

miner.ml.double_parameterized_ratio.DoubleParameterizedRatio
method), 85
calculate_fisher_information() (mad-
miner.ml.ensemble. Ensemble method), 90
calculate_fisher_information() (mad-
miner.ml.likelihood. LikelihoodEstimator
method), 95
calculate_fisher_information_full_detector()
(madminer.fisherinformation.information. FisherInformation
method), 41
calculate_fisher_information_full_truth()
(madminer.fisherinformation.information. FisherInformation
method), 43
calculate_fisher_information_histld() (mad-
miner.fisherinformation.information. FisherInformation
method), 43
calculate_fisher_information_hist2d() (mad-
miner.fisherinformation.information. FisherInformation
method), 44

143



MadMiner Documentation, Release 0.9.5

calculate_fisher_information_nuisance_constraiexsl@ate() (madminer.ml.score.ScoreEstimator
(madminer.fisherinformation.information. FisherInformationmethod), 109
method), 45 evaluate_log_likelihood() (mad-
calculate_fisher_information_rate() (mad- miner.ml.base.Estimator method), 83
miner.fisherinformation.information. FisherInformesiatuate_log_likelihood () (mad-
method), 45 miner.ml.double_parameterized_ratio.DoubleParameterizedRatio
combine_and_shuffle() (in module mad- method), 86
miner.sampling.combine), 123 evaluate_log_likelihood() (mad-
ConditionalEstimator (class in madminer.ml.base), miner.ml.ensemble. Ensemble method), 91
81 evaluate_log_likelihood() (mad-
create_expected_negative_log_likelihood() miner.ml.likelihood. LikelihoodEstimator
(madminer.likelihood.base.BaseLikelihood method), 96
method), 63 evaluate_log_likelihood() (mad-
create_expected_negative_log_likelihood() miner.ml.parameterized_ratio.ParameterizedRatioEstimator
(madminer.likelihood.histo.HistoLikelihood method), 105
method), 64 evaluate_log_likelihood() (mad-
create_expected_negative_log_likelihood() miner.ml.score.ScoreEstimator method),
(madminer.likelihood.neural. NeuralLikelihood 109
method), 69 evaluate_log_likelihood_ratio() (mad-
create_negative_log_likelihood() (mad- miner.ml.base. Estimator method), 84
miner.likelihood.base.BaseLikelihood method), evaluate_log_likelihood_ratio() (mad-
63 miner.ml.double_parameterized_ratio.DoubleParameterizedRatio
create_negative_log_likelihood() (mad- method), 86
miner.likelihood. histo.HistoLikelihood evaluate_log_likelihood_ratio() (mad-
method), 65 miner.ml.ensemble. Ensemble method), 92
create_negative_log_likelihood() (mad- evaluate_log_likelihood_ratio() (mad-
miner.likelihood.neural. NeuralLikelihood miner.ml.likelihood. LikelihoodEstimator
method), 69 method), 96
cross_sections() (mad- evaluate_log_likelihood_ratio() (mad-
miner.sampling.sampleaugmenter.SampleAugmenter miner.ml.parameterized_ratio.ParameterizedRatioEstimator
method), 127 method), 105
evaluate_log_likelihood_ratio() (mad-
D miner.ml.score.ScoreEstimator method),
DataAnalyzer (class in mad- 109
miner.analysis.dataanalyzer), 15 evaluate_log_likelihood_ratio_torch() (mad-
DelphesReader (class in mad- miner.ml.parameterized_ratio. ParameterizedRatioEstimator
miner.delphes.delphes_reader), 29 method), 106
distance_contours() (mad- evaluate_score() (madminer.ml.base. Estimator
miner.fisherinformation.geometry.InformationGeometry method), 84
method), 37 evaluate_score() (mad-
DoubleParameterizedRatioEstimator (class in miner.ml.double_parameterized_ratio.DoubleParameterizedRatio
madminer.ml.double_parameterized_ratio), 84 method), 86
evaluate_score() (madminer.ml.ensemble.Ensemble
E method), 92
Ensemble (class in madminer.ml.ensemble), 89 evaluate_'score(). . — . (mad-
Estimator (class in madminer.ml.base), 82 miner.ml.likelihood.LikelihoodEstimator
method), 97

evaluate() (madminer.ml.base.Estimator method), 83

evaluate() (madminer.ml.double _parameterized_mtio.Do%%?e]l%%’}zrerw.ecrcz’{ee atioEstimator .(mad- ) )

method), 86 miner.ml.parameterized_ratio. ParameterizedRatioEstimator
evaluate() (madminer.ml.likelihood.LikelihoodEstimator method), 106 . .

method), 96 evaluate_score() (madminer.ml.score.ScoreEstimator
evaluate() (madminer.ml.parameterized_ratio.ParameterizedRatioEnslﬁ%lg (7)1‘ 109

method), 105 event_loader() (mad-

miner.analysis.dataanalyzer.DataAnalyzer

144 Index



MadMiner Documentation, Release 0.9.5

method), 15

expected_limits() (mad-
miner.limits.asymptotic_limits.AsymptoticLimits
method), 72

F

find_trajectory() (mad-

miner.fisherinformation.geometry.InformationGeometry

method), 38
finite_differences() (mad-
miner.core.madminer.MadMiner method),
22
FisherInformation (class in mad-
miner.fisherinformation.information), 40
fix_params() (in module mad-
miner.likelihood. manipulate), 66
full_information() (mad-

miner.fisherinformation.information. FisherInform

method), 46

H

histo_information() (mad-

initialize_parameter_transform() (mad-

miner.ml.base.ConditionalEstimator method),
81

L

LHEReader (class in madminer.lhe.lhe_reader), 55

LikelihoodEstimator (class in

miner.ml.likelihood), 94

load() (madminer.core.madminer.MadMiner method),
22

mad-

load () (madminer.ml.base.Conditional Estimator

method), 81

load ) (madminer.ml.base.Estimator method), 84

load () (madminer.ml.ensemble.Ensemble method), 93

load() (madminer.ml.score.ScoreEstimator method),
110

load_estimator () (in module madminer.ml.lookup), 99

?\t;lon

MadMiner (class in madminer.core.madminer), 19

madminer.analysis

module, 18

miner.fisherinformation.information. FisherInform@gdminer . analysis.dataanalyzer

method), 47

histo_information_2d() (mad-

module, 15

madminer.core

miner.fisherinformation.information. FisherInformationmodule, 28

method), 48

histogram_of_fisher_information() (mad-

madminer.core.madminer

module, 19

miner.fisherinformation.information. FisherInformigdminer . delphes

method), 49

histogram_of_information() (mad-

module, 35

madminer.delphes.delphes_reader

miner.fisherinformation.information. FisherInformationmodule, 29

method), 50

histogram_of_sigma_dsigma() (mad-

madminer. fisherinformation

module, 54

miner.fisherinformation.information. FisherInformigdminer . fisherinformation.geometry

method), 51
HistoLikelihood (class in madminer.likelihood.histo),
63

iid_nuisance_parameters() (in module mad-
miner.sampling.parameters), 124
information_from_formula() (mad-

module, 37

madminer. fisherinformation.information

module, 40

madminer. fisherinformation.manipulate

module, 53

madminer. lhe

module, 61

madminer.lhe.lhe_reader

miner.fisherinformation. geometry.InformationGeometrjtodule, 55

method), 39

information_from_grid() (mad-

madminer.likelihood

module, 70

miner.fisherinformation.geometry.InformationGeoWadminer . likelihood.base

method), 39
InformationGeometry (class in mad-
miner.fisherinformation.geometry), 37
initialize_input_transform() (mad-

miner.ml.base.Estimator method), 84

module, 63

madminer.likelihood.histo

module, 63

madminer.likelihood.manipulate

module, 66

madminer.likelihood.neural

module, 69

Index

145



MadMiner Documentation, Release 0.9.5

madminer.limits
module, 79
madminer.limits.asymptotic_limits
module, 71
madminer.ml
module, 112
madminer.ml.base
module, 81
madminer.ml.double_parameterized_ratio
module, 84
madminer.ml.ensemble

madminer. lhe, 61
madminer.lhe.lhe_reader, 55
madminer.likelihood, 70
madminer.likelihood.base, 63
madminer.likelihood.histo, 63
madminer.likelihood.manipulate, 66
madminer.likelihood.neural, 69
madminer.limits, 79
madminer.limits.asymptotic_limits, 71
madminer.ml, 112
madminer.ml.base, 81

module, 89 madminer.ml.double_parameterized_ratio,
madminer.ml.likelihood 84

module, 94 madminer.ml.ensemble, 89
madminer.ml.lookup madminer.ml.likelihood, 94

module, 99 madminer.ml.lookup, 99
madminer.ml.morphing_aware madminer.ml.morphing_aware, 99

module, 99 madminer.ml.parameterized_ratio, 104
madminer.ml.parameterized_ratio madminer.ml.score, 109

module, 104 madminer.plotting, 122
madminer.ml.score madminer.plotting.distributions, 113

module, 109 madminer.plotting.fisherinformation, 115
madminer.plotting madminer.plotting.limits, 118

module, 122 madminer.plotting.morphing, 119
madminer.plotting.distributions madminer.plotting.uncertainties, 120

module, 113 madminer.sampling, 137
madminer.plotting.fisherinformation madminer.sampling.combine, 123

module, 115 madminer.sampling.parameters, 124
madminer.plotting.limits madminer.sampling.sampleaugmenter, 125

module, 118 morphing_point () (in module mad-
madminer.plotting.morphing miner.sampling.parameters), 124

module, 119 morphing_points() (in module mad-
madminer.plotting.uncertainties miner.sampling.parameters), 125

module, 120 MorphingAwareRatioEstimator (class in mad-
madminer.sampling miner.ml.morphing_aware), 99

module, 137
madminer.sampling.combine Pq

module, 123 NeuralLikelihood (class in mad-
madminer.sampling.parameters miner.likelihood.neural), 69

module, 124 nominal_nuisance_parameters() (in module mad-
madminer.sampling.sampleaugmenter miner.sampling.parameters), 125

module, 125 nuisance_constraint_information() (mad-
module miner.fisherinformation.information. FisherInformation

madminer.analysis, 18 method), 52

madminer.analysis.dataanalyzer, 15

madminer . core, 28 O

madm%ner.core.madminer,19 observed_limits() (mad-

madminer.delphes, 35 iner.limits.asymptotic_limits.AsymptoticLimits

madminer.delphes.delphes_reader, 29 e ymp - ymp

. ; - - method), 75

madminer. fisherinformation, 54

madminer. fisherinformation.geometry, 37 F)

madminer. fisherinformation.information, . . . )

40 ParameterizedRatioEstimator (class in mad-

madminer. fisherinformation.manipulate, 53 miner.ml.parameterized_ratio), 104

146 Index



MadMiner Documentation, Release 0.9.5

plot_1ld_morphing_basis() (in module mad-
miner.plotting.morphing), 119
plot_2d_morphing_basis() (in module mad-

miner.plotting.morphing), 119
plot_distribution_of_information() (in module
madminer.plotting.fisherinformation), 115
plot_distributions() (in module
miner.plotting.distributions), 113
plot_fisher_information_contours_2d() (in mod-
ule madminer.plotting.fisherinformation), 116

mad-

plot_fisherinfo_barplot() (in module mad-
miner.plotting.fisherinformation), 117

plot_histograms() (in module mad-
miner.plotting.distributions), 115

plot_nd_morphing_basis_scatter() (in module

madminer.plotting.morphing), 120
plot_nd_morphing_basis_slices() (in module mad-
miner.plotting.morphing), 120

plot_pvalue_limits() (in module mad-
miner.plotting.limits), 118
plot_systematics() (in module mad-
miner.plotting.uncertainties), 120
plot_uncertainty() (in module mad-
miner.plotting.uncertainties), 121
profile_information() (in module mad-
miner.fisherinformation.manipulate), 53
profile_log_likelihood() (in module mad-
miner.likelihood. manipulate), 67
project_information() (in module mad-
miner.fisherinformation.manipulate), 54
project_log_likelihood() (in module mad-

miner.likelihood. manipulate), 68

Q

QuadraticMorphingAwareRatioEstimator (class in
madminer.ml.morphing_aware), 101

R

random_morphing_points() (in module mad-
miner.sampling.parameters), 125
rate_information() (mad-

miner.fisherinformation.information. FisherInformation

reset_observables() (mad-
miner.lhe.lhe_reader. LHEReader method),
59

reweight_existing_sample() (mad-
miner.core.madminer.MadMiner method),

22

run() (madminer.core.madminer.MadMiner method), 23

run_delphes()

(mad-
miner.delphes.delphes_reader.DelphesReader
method), 33

run_multiple() (madminer.core.madminer.MadMiner

S

sample_test()

sample_train_density()

sample_train_local()

sample_train_more_ratios()

sample_train_plain()

sample_train_ratio()

SampleAugmenter

method), 24

(mad-
miner.sampling.sampleaugmenter.SampleAugmenter
method), 127

(mad-
miner.sampling.sampleaugmenter.SampleAugmenter
method), 129

(mad-
miner.sampling.sampleaugmenter.SampleAugmenter
method), 130

(mad-
miner.sampling.sampleaugmenter.SampleAugmenter
method), 131

(mad-
miner.sampling.sampleaugmenter.SampleAugmenter
method), 133

(mad-
miner.sampling.sampleaugmenter.SampleAugmenter
method), 135

(class in mad-
miner.sampling.sampleaugmenter), 125

save() (madminer.core.madminer.MadMiner method),

26

save () (madminer.delphes.delphes_reader.DelphesReader

method), 34

save() (madminer.lhe.lhe_reader.LHEReader method),

save()

59
(madminer.ml.base. Conditional Estimator
method), 82

method), 52 save() (madminer.ml.base.Estimator method), 84
reset_cuts() (madminer.delphes.delphes_reader.DelphesR@H&&g (madminer.ml.ensemble. Ensemble method), 93
method), 33 save() (madminer.ml.score.ScoreEstimator method),
reset_cuts() (madminer.lhe.lhe_reader.LHEReader 110
method), 59 ScoreEstimator (class in madminer.ml.score), 109
reset_efficiencies() (mad- set_accep'Fance() (mad-
miner.lhe.lhe_reader.LHEReader method), miner.delphes.delphes_reader.DelphesReader
59 method), 34
reset_observables() (mad- set_benchrparks() . . (mad-
miner.delphes.delphes_reader.DelphesReader miner.core.madminer.MadMiner method),
method), 33 26
Index 147



MadMiner Documentation, Release 0.9.5

set_met_noise() (mad-
miner.lhe.lhe_reader. LHEReader method),
60

set_morphing() (madminer.core.madminer.MadMiner
method), 26

set_nuisance() (madminer.ml.score.ScoreEstimator
method), 110

set_parameters() (mad-
miner.core.madminer.MadMiner method),
27

set_smearing() (madminer.lhe.lhe_reader.LHEReader
method), 60

T

TheresAGoodReasonThisDoesntWork, 84
train() (madminer.ml.base.Estimator method), 84

train() (madminer.ml.double_parameterized_ratio.DoubleParameterizedRatioEstimator

method), 86
train() (madminer.ml likelihood.LikelihoodEstimator
method), 97

train() (madminer.ml.morphing_aware.MorphingAwareRatioEstimator

method), 99

train() (madminer.ml.morphing_aware.QuadraticMorphingAwareRatioEstimator

method), 102

train() (madminer.ml.parameterized_ratio.ParameterizedRatioEstimator

method), 106

train() (madminer.ml.score.ScoreEstimator method),
111

train_all(Q) (madminer.ml.ensemble. Ensemble
method), 93

train_one() (madminer.ml.ensemble. Ensemble
method), 93

truth_information() (mad-

miner.fisherinformation.information. FisherInformation

method), 52

W

weighted_events() (mad-
miner.analysis.dataanalyzer.DataAnalyzer
method), 16

X

xsec_gradients() (mad-
miner.analysis.dataanalyzer.DataAnalyzer
method), 17

xsecs () (madminer.analysis.dataanalyzer.DataAnalyzer
method), 17

148

Index



	Introduction to MadMiner
	Getting started
	Simulator dependencies
	Install MadMiner

	Using MadMiner
	Paper
	Tutorials
	Typical workflow
	Technical documentation
	Support

	Trouble-shooting
	Event generation crashing
	Key errors when reading LHE files
	Zero events after reading LHE or Delphes file
	Neural network output does not make sense

	References
	Citations
	Acknowledgements

	madminer.analysis package
	Submodules
	madminer.analysis.dataanalyzer module
	Module contents

	madminer.core package
	Submodules
	madminer.core.madminer module
	Module contents

	madminer.delphes package
	Submodules
	madminer.delphes.delphes_reader module
	Module contents

	madminer.fisherinformation package
	Submodules
	madminer.fisherinformation.geometry module
	madminer.fisherinformation.information module
	madminer.fisherinformation.manipulate module
	Module contents

	madminer.lhe package
	Submodules
	madminer.lhe.lhe_reader module
	Module contents

	madminer.likelihood package
	Submodules
	madminer.likelihood.base module
	madminer.likelihood.histo module
	madminer.likelihood.manipulate module
	madminer.likelihood.neural module
	Module contents

	madminer.limits package
	Submodules
	madminer.limits.asymptotic_limits module
	Module contents

	madminer.ml package
	Submodules
	madminer.ml.base module
	madminer.ml.double_parameterized_ratio module
	madminer.ml.ensemble module
	madminer.ml.likelihood module
	madminer.ml.lookup module
	madminer.ml.morphing_aware module
	madminer.ml.parameterized_ratio module
	madminer.ml.score module
	Module contents

	madminer.plotting package
	Submodules
	madminer.plotting.distributions module
	madminer.plotting.fisherinformation module
	madminer.plotting.limits module
	madminer.plotting.morphing module
	madminer.plotting.uncertainties module
	Module contents

	madminer.sampling package
	Submodules
	madminer.sampling.combine module
	madminer.sampling.parameters module
	madminer.sampling.sampleaugmenter module
	Module contents

	Indices and tables
	Python Module Index
	Index

